#include "opencv2/video/tracking.hpp" #include "opencv2/highgui/highgui.hpp" #include void help() { printf( "\nExamle of c calls to OpenCV's Kalman filter.\n" " Tracking of rotating point.\n" " Rotation speed is constant.\n" " Both state and measurements vectors are 1D (a point angle),\n" " Measurement is the real point angle + gaussian noise.\n" " The real and the estimated points are connected with yellow line segment,\n" " the real and the measured points are connected with red line segment.\n" " (if Kalman filter works correctly,\n" " the yellow segment should be shorter than the red one).\n" "\n" " Pressing any key (except ESC) will reset the tracking with a different speed.\n" " Pressing ESC will stop the program.\n" ); } int main(int argc, char** argv) { const float A[] = { 1, 1, 0, 1 }; help(); IplImage* img = cvCreateImage( cvSize(500,500), 8, 3 ); CvKalman* kalman = cvCreateKalman( 2, 1, 0 ); CvMat* state = cvCreateMat( 2, 1, CV_32FC1 ); /* (phi, delta_phi) */ CvMat* process_noise = cvCreateMat( 2, 1, CV_32FC1 ); CvMat* measurement = cvCreateMat( 1, 1, CV_32FC1 ); CvRNG rng = cvRNG(-1); char code = -1; cvZero( measurement ); cvNamedWindow( "Kalman", 1 ); for(;;) { cvRandArr( &rng, state, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(0.1) ); memcpy( kalman->transition_matrix->data.fl, A, sizeof(A)); cvSetIdentity( kalman->measurement_matrix, cvRealScalar(1) ); cvSetIdentity( kalman->process_noise_cov, cvRealScalar(1e-5) ); cvSetIdentity( kalman->measurement_noise_cov, cvRealScalar(1e-1) ); cvSetIdentity( kalman->error_cov_post, cvRealScalar(1)); cvRandArr( &rng, kalman->state_post, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(0.1) ); for(;;) { #define calc_point(angle) \ cvPoint( cvRound(img->width/2 + img->width/3*cos(angle)), \ cvRound(img->height/2 - img->width/3*sin(angle))) float state_angle = state->data.fl[0]; CvPoint state_pt = calc_point(state_angle); const CvMat* prediction = cvKalmanPredict( kalman, 0 ); float predict_angle = prediction->data.fl[0]; CvPoint predict_pt = calc_point(predict_angle); float measurement_angle; CvPoint measurement_pt; cvRandArr( &rng, measurement, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(sqrt(kalman->measurement_noise_cov->data.fl[0])) ); /* generate measurement */ cvMatMulAdd( kalman->measurement_matrix, state, measurement, measurement ); measurement_angle = measurement->data.fl[0]; measurement_pt = calc_point(measurement_angle); /* plot points */ #define draw_cross( center, color, d ) \ cvLine( img, cvPoint( center.x - d, center.y - d ), \ cvPoint( center.x + d, center.y + d ), color, 1, CV_AA, 0); \ cvLine( img, cvPoint( center.x + d, center.y - d ), \ cvPoint( center.x - d, center.y + d ), color, 1, CV_AA, 0 ) cvZero( img ); draw_cross( state_pt, CV_RGB(255,255,255), 3 ); draw_cross( measurement_pt, CV_RGB(255,0,0), 3 ); draw_cross( predict_pt, CV_RGB(0,255,0), 3 ); cvLine( img, state_pt, measurement_pt, CV_RGB(255,0,0), 3, CV_AA, 0 ); cvLine( img, state_pt, predict_pt, CV_RGB(255,255,0), 3, CV_AA, 0 ); cvKalmanCorrect( kalman, measurement ); cvRandArr( &rng, process_noise, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(sqrt(kalman->process_noise_cov->data.fl[0]))); cvMatMulAdd( kalman->transition_matrix, state, process_noise, state ); cvShowImage( "Kalman", img ); code = (char) cvWaitKey( 100 ); if( code > 0 ) break; } if( code == 27 || code == 'q' || code == 'Q' ) break; } cvDestroyWindow("Kalman"); return 0; } #ifdef _EiC main(1, "kalman.c"); #endif