// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "perf_precomp.hpp" #include "opencv2/core/ocl.hpp" #include "opencv2/dnn/shape_utils.hpp" namespace { #ifdef HAVE_HALIDE #define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE #else #define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT #endif #define TEST_DNN_TARGET DNN_TARGET_CPU, DNN_TARGET_OPENCL CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE) CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL) class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple > { public: dnn::Backend backend; dnn::Target target; dnn::Net net; void processNet(std::string weights, std::string proto, std::string halide_scheduler, int inWidth, int inHeight, const std::string& outputLayer, const std::string& framework) { backend = (dnn::Backend)(int)get<0>(GetParam()); target = (dnn::Target)(int)get<1>(GetParam()); if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) { #if defined(HAVE_OPENCL) if (!cv::ocl::useOpenCL()) #endif { throw ::SkipTestException("OpenCL is not available/disabled in OpenCV"); } } Mat input(inHeight, inWidth, CV_32FC3); randu(input, 0.0f, 1.0f); weights = findDataFile(weights, false); if (!proto.empty()) proto = findDataFile(proto, false); if (!halide_scheduler.empty() && backend == DNN_BACKEND_HALIDE) halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true); if (framework == "caffe") { net = cv::dnn::readNetFromCaffe(proto, weights); } else if (framework == "torch") { net = cv::dnn::readNetFromTorch(weights); } else if (framework == "tensorflow") { net = cv::dnn::readNetFromTensorflow(weights); } else CV_Error(Error::StsNotImplemented, "Unknown framework " + framework); net.setInput(blobFromImage(input, 1.0, Size(), Scalar(), false)); net.setPreferableBackend(backend); net.setPreferableTarget(target); if (backend == DNN_BACKEND_HALIDE) { net.setHalideScheduler(halide_scheduler); } MatShape netInputShape = shape(1, 3, inHeight, inWidth); size_t weightsMemory = 0, blobsMemory = 0; net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory); int64 flops = net.getFLOPS(netInputShape); net.forward(outputLayer); // warmup std::cout << "Memory consumption:" << std::endl; std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl; std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl; std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl; PERF_SAMPLE_BEGIN() net.forward(); PERF_SAMPLE_END() SANITY_CHECK_NOTHING(); } }; PERF_TEST_P_(DNNTestNetwork, AlexNet) { processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", "alexnet.yml", 227, 227, "prob", "caffe"); } PERF_TEST_P_(DNNTestNetwork, GoogLeNet) { processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", "", 224, 224, "prob", "caffe"); } PERF_TEST_P_(DNNTestNetwork, ResNet50) { processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", "resnet_50.yml", 224, 224, "prob", "caffe"); } PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1) { processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", "squeezenet_v1_1.yml", 227, 227, "prob", "caffe"); } PERF_TEST_P_(DNNTestNetwork, Inception_5h) { processNet("dnn/tensorflow_inception_graph.pb", "", "inception_5h.yml", 224, 224, "softmax2", "tensorflow"); } PERF_TEST_P_(DNNTestNetwork, ENet) { processNet("dnn/Enet-model-best.net", "", "enet.yml", 512, 256, "l367_Deconvolution", "torch"); } INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, testing::Combine( ::testing::Values(TEST_DNN_BACKEND), DNNTarget::all() ) ); } // namespace