// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "../precomp.hpp" #include "layers_common.hpp" #include "../op_inf_engine.hpp" #include namespace cv { namespace dnn { class ResizeLayerImpl : public ResizeLayer { public: ResizeLayerImpl(const LayerParams& params) : zoomFactorWidth(0), zoomFactorHeight(0), scaleWidth(0), scaleHeight(0) { setParamsFrom(params); outWidth = params.get("width", 0); outHeight = params.get("height", 0); if (params.has("zoom_factor")) { CV_Assert(!params.has("zoom_factor_x") && !params.has("zoom_factor_y")); zoomFactorWidth = zoomFactorHeight = params.get("zoom_factor"); } else if (params.has("zoom_factor_x") || params.has("zoom_factor_y")) { CV_Assert(params.has("zoom_factor_x") && params.has("zoom_factor_y")); zoomFactorWidth = params.get("zoom_factor_x"); zoomFactorHeight = params.get("zoom_factor_y"); } interpolation = params.get("interpolation"); CV_Assert(interpolation == "nearest" || interpolation == "bilinear"); alignCorners = params.get("align_corners", false); } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4); outputs.resize(1, inputs[0]); outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight); outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth); // We can work in-place (do nothing) if input shape == output shape. return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]); } virtual bool supportBackend(int backendId) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE if (backendId == DNN_BACKEND_INFERENCE_ENGINE) { return (interpolation == "nearest" && scaleWidth == scaleHeight) || (interpolation == "bilinear" && INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R4)); } #endif return backendId == DNN_BACKEND_OPENCV; } virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); if (!outWidth && !outHeight) { outHeight = outputs[0].size[2]; outWidth = outputs[0].size[3]; } if (alignCorners && outHeight > 1) scaleHeight = static_cast(inputs[0].size[2] - 1) / (outHeight - 1); else scaleHeight = static_cast(inputs[0].size[2]) / outHeight; if (alignCorners && outWidth > 1) scaleWidth = static_cast(inputs[0].size[3] - 1) / (outWidth - 1); else scaleWidth = static_cast(inputs[0].size[3]) / outWidth; } void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); if (inputs_arr.depth() == CV_16S) { forward_fallback(inputs_arr, outputs_arr, internals_arr); return; } std::vector inputs, outputs, internals; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); internals_arr.getMatVector(internals); if (outHeight == inputs[0].size[2] && outWidth == inputs[0].size[3]) return; Mat& inp = inputs[0]; Mat& out = outputs[0]; if (interpolation == "nearest") { for (size_t n = 0; n < inputs[0].size[0]; ++n) { for (size_t ch = 0; ch < inputs[0].size[1]; ++ch) { resize(getPlane(inp, n, ch), getPlane(out, n, ch), Size(outWidth, outHeight), 0, 0, INTER_NEAREST); } } } else if (interpolation == "bilinear") { const int inpHeight = inp.size[2]; const int inpWidth = inp.size[3]; const int inpSpatialSize = inpHeight * inpWidth; const int outSpatialSize = outHeight * outWidth; const int numPlanes = inp.size[0] * inp.size[1]; CV_Assert_N(inp.isContinuous(), out.isContinuous()); Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight); Mat outPlanes = out.reshape(1, numPlanes * outHeight); for (int y = 0; y < outHeight; ++y) { float input_y = y * scaleHeight; int y0 = static_cast(input_y); const float* inpData_row0 = inpPlanes.ptr(y0); const float* inpData_row1 = inpPlanes.ptr(std::min(y0 + 1, inpHeight - 1)); for (int x = 0; x < outWidth; ++x) { float input_x = x * scaleWidth; int x0 = static_cast(input_x); int x1 = std::min(x0 + 1, inpWidth - 1); float* outData = outPlanes.ptr(y, x); const float* inpData_row0_c = inpData_row0; const float* inpData_row1_c = inpData_row1; for (int c = 0; c < numPlanes; ++c) { *outData = inpData_row0_c[x0] + (input_y - y0) * (inpData_row1_c[x0] - inpData_row0_c[x0]) + (input_x - x0) * (inpData_row0_c[x1] - inpData_row0_c[x0] + (input_y - y0) * (inpData_row1_c[x1] - inpData_row0_c[x1] - inpData_row1_c[x0] + inpData_row0_c[x0])); inpData_row0_c += inpSpatialSize; inpData_row1_c += inpSpatialSize; outData += outSpatialSize; } } } } else CV_Error(Error::StsNotImplemented, "Unknown interpolation: " + interpolation); } virtual Ptr initInfEngine(const std::vector >&) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5) InferenceEngine::Builder::Layer ieLayer(name); ieLayer.setName(name); if (interpolation == "nearest") { ieLayer.setType("Resample"); ieLayer.getParameters()["type"] = std::string("caffe.ResampleParameter.NEAREST"); ieLayer.getParameters()["antialias"] = false; if (scaleWidth != scaleHeight) CV_Error(Error::StsNotImplemented, "resample with sw != sh"); ieLayer.getParameters()["factor"] = 1.0f / scaleWidth; } else if (interpolation == "bilinear") { ieLayer.setType("Interp"); ieLayer.getParameters()["pad_beg"] = 0; ieLayer.getParameters()["pad_end"] = 0; ieLayer.getParameters()["align_corners"] = false; } else CV_Error(Error::StsNotImplemented, "Unsupported interpolation: " + interpolation); ieLayer.getParameters()["width"] = outWidth; ieLayer.getParameters()["height"] = outHeight; ieLayer.setInputPorts(std::vector(1)); ieLayer.setOutputPorts(std::vector(1)); return Ptr(new InfEngineBackendNode(ieLayer)); #else InferenceEngine::LayerParams lp; lp.name = name; lp.precision = InferenceEngine::Precision::FP32; std::shared_ptr ieLayer; if (interpolation == "nearest") { lp.type = "Resample"; ieLayer = std::shared_ptr(new InferenceEngine::CNNLayer(lp)); ieLayer->params["type"] = "caffe.ResampleParameter.NEAREST"; ieLayer->params["antialias"] = "0"; } else if (interpolation == "bilinear") { lp.type = "Interp"; ieLayer = std::shared_ptr(new InferenceEngine::CNNLayer(lp)); ieLayer->params["pad_beg"] = "0"; ieLayer->params["pad_end"] = "0"; ieLayer->params["align_corners"] = "0"; } else CV_Error(Error::StsNotImplemented, "Unsupported interpolation: " + interpolation); ieLayer->params["width"] = cv::format("%d", outWidth); ieLayer->params["height"] = cv::format("%d", outHeight); return Ptr(new InfEngineBackendNode(ieLayer)); #endif #endif // HAVE_INF_ENGINE return Ptr(); } protected: int outWidth, outHeight, zoomFactorWidth, zoomFactorHeight; String interpolation; float scaleWidth, scaleHeight; bool alignCorners; }; Ptr ResizeLayer::create(const LayerParams& params) { return Ptr(new ResizeLayerImpl(params)); } class InterpLayerImpl CV_FINAL : public ResizeLayerImpl { public: InterpLayerImpl(const LayerParams& params) : ResizeLayerImpl(params) {} bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4); outputs.resize(1, inputs[0]); outputs[0][2] = outHeight > 0 ? outHeight : (1 + zoomFactorHeight * (outputs[0][2] - 1)); outputs[0][3] = outWidth > 0 ? outWidth : (1 + zoomFactorWidth * (outputs[0][3] - 1)); // We can work in-place (do nothing) if input shape == output shape. return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]); } virtual bool supportBackend(int backendId) CV_OVERRIDE { return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_INFERENCE_ENGINE; } virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); if (!outWidth && !outHeight) { outHeight = outputs[0].size[2]; outWidth = outputs[0].size[3]; } int inpHeight = inputs[0].size[2]; int inpWidth = inputs[0].size[3]; scaleHeight = (outHeight > 1) ? (static_cast(inpHeight - 1) / (outHeight - 1)) : 0.f; scaleWidth = (outWidth > 1) ? (static_cast(inpWidth - 1) / (outWidth - 1)) : 0.f; } virtual Ptr initInfEngine(const std::vector >&) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5) InferenceEngine::Builder::Layer ieLayer(name); ieLayer.setName(name); ieLayer.setType("Interp"); ieLayer.getParameters()["pad_beg"] = 0; ieLayer.getParameters()["pad_end"] = 0; ieLayer.getParameters()["width"] = outWidth; ieLayer.getParameters()["height"] = outHeight; ieLayer.setInputPorts(std::vector(1)); ieLayer.setOutputPorts(std::vector(1)); return Ptr(new InfEngineBackendNode(ieLayer)); #else InferenceEngine::LayerParams lp; lp.name = name; lp.type = "Interp"; lp.precision = InferenceEngine::Precision::FP32; std::shared_ptr ieLayer(new InferenceEngine::CNNLayer(lp)); ieLayer->params["pad_beg"] = "0"; ieLayer->params["pad_end"] = "0"; return Ptr(new InfEngineBackendNode(ieLayer)); #endif #endif // HAVE_INF_ENGINE return Ptr(); } }; Ptr InterpLayer::create(const LayerParams& params) { LayerParams lp(params); lp.set("interpolation", "bilinear"); return Ptr(new InterpLayerImpl(lp)); } } // namespace dnn } // namespace cv