/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "../op_inf_engine.hpp" #include "layers_common.hpp" #include #ifdef HAVE_OPENCL #include "opencl_kernels_dnn.hpp" #endif namespace cv { namespace dnn { class SliceLayerImpl CV_FINAL : public SliceLayer { public: SliceLayerImpl(const LayerParams& params) { setParamsFrom(params); axis = params.get("axis", 1); if (params.has("slice_point")) { CV_Assert(!params.has("begin") && !params.has("size") && !params.has("end")); const DictValue &indicesValue = params.get("slice_point"); sliceRanges.resize(indicesValue.size() + 1, std::vector(axis + 1, Range::all())); int prevSlice = 0; for (int i = 0; i < indicesValue.size(); ++i) { sliceRanges[i][axis].start = prevSlice; sliceRanges[i][axis].end = indicesValue.get(i); prevSlice = sliceRanges[i][axis].end; } sliceRanges.back()[axis].start = prevSlice; } else if (params.has("begin")) { CV_Assert(params.has("size") ^ params.has("end")); const DictValue &begins = params.get("begin"); const DictValue &sizesOrEnds = params.has("size") ? params.get("size") : params.get("end"); CV_Assert(begins.size() == sizesOrEnds.size()); sliceRanges.resize(1); sliceRanges[0].resize(begins.size(), Range::all()); for (int i = 0; i < begins.size(); ++i) { int start = begins.get(i); int sizeOrEnd = sizesOrEnds.get(i); // It may be negative to reverse indexation. CV_Assert(start >= 0); sliceRanges[0][i].start = start; if (params.has("size")) { int size = sizeOrEnd; CV_Assert(size == -1 || size > 0); // -1 value means range [start, axis_size). sliceRanges[0][i].end = size > 0 ? (start + size) : -1; // We'll finalize a negative value later. } else { int end = sizeOrEnd; CV_Assert(end < 0 || end > start); // End index is excluded. sliceRanges[0][i].end = end; // We'll finalize a negative value later. } } } } virtual bool supportBackend(int backendId) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE if (backendId == DNN_BACKEND_INFERENCE_ENGINE) { return INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2018R5) && sliceRanges.size() == 1 && sliceRanges[0].size() == 4; } else #endif return backendId == DNN_BACKEND_OPENCV; } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert(inputs.size() == 1); MatShape inpShape = inputs[0]; if (!sliceRanges.empty()) { outputs.resize(sliceRanges.size(), inpShape); for (int i = 0; i < outputs.size(); ++i) { CV_Assert(sliceRanges[i].size() <= inpShape.size()); for (int j = 0; j < sliceRanges[i].size(); ++j) { outputs[i][j] = clamp(sliceRanges[i][j], inpShape[j]).size(); } } } else // Divide input blob on equal parts by axis. { CV_Assert(0 <= axis && axis < inpShape.size()); CV_Assert(requiredOutputs > 0 && inpShape[axis] % requiredOutputs == 0); inpShape[axis] /= requiredOutputs; outputs.resize(requiredOutputs, inpShape); } return false; } void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); CV_Assert(inputs.size() == 1); const MatSize& inpShape = inputs[0].size; if (sliceRanges.empty()) { // Divide input blob on equal parts by axis. int outAxisSize = inpShape[axis] / outputs.size(); sliceRanges.resize(outputs.size(), std::vector(axis + 1, Range::all())); int prevSlice = 0; for (int i = 0; i < outputs.size(); ++i) { sliceRanges[i][axis].start = prevSlice; sliceRanges[i][axis].end = sliceRanges[i][axis].start + outAxisSize; prevSlice = sliceRanges[i][axis].end; } } else CV_Assert(outputs.size() == sliceRanges.size()); for (int i = 0; i < outputs.size(); ++i) { CV_Assert(sliceRanges[i].size() <= inpShape.dims()); // Clamp. for (int j = 0; j < sliceRanges[i].size(); ++j) { sliceRanges[i][j] = clamp(sliceRanges[i][j], inpShape[j]); } // Fill the rest of ranges. for (int j = sliceRanges[i].size(); j < inpShape.dims(); ++j) { sliceRanges[i].push_back(Range::all()); } } } #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) { std::vector inputs; std::vector outputs; bool use_half = (inputs_.depth() == CV_16S); inputs_.getUMatVector(inputs); outputs_.getUMatVector(outputs); if (inputs[0].dims < 4 || (total(shape(outputs[0]), 0, 2) % 4 != 0) || (total(shape(outputs[0]), 2) % 4 != 0)) return false; String opts; if (use_half) opts = "-DDtype=half -DDtype4=half4 -DDtype8=half8"; else opts = "-DDtype=float -DDtype4=float4 -DDtype8=float8"; const UMat& inpMat = inputs[0]; for (size_t i = 0; i < outputs.size(); i++) { int groups = outputs[i].size[0]; int channels = outputs[i].size[1]; int rows = outputs[i].size[2]; int cols = outputs[i].size[3]; ocl::Kernel kernel("slice", ocl::dnn::slice_oclsrc, opts); size_t local[] = { 128 }; size_t global[] = { (size_t)groups * channels / 4 * local[0] }; int idx = 0; kernel.set(idx++, ocl::KernelArg::PtrReadOnly(inpMat)); kernel.set(idx++, (int)(inpMat.size[2] * inpMat.size[3])); kernel.set(idx++, (int)(rows * cols)); kernel.set(idx++, (int)inpMat.size[3]); kernel.set(idx++, (int)cols); kernel.set(idx++, (int)sliceRanges[i][2].start); kernel.set(idx++, (int)sliceRanges[i][3].start); kernel.set(idx++, ocl::KernelArg::PtrWriteOnly(outputs[i])); bool ret = kernel.run(1, global, local, false); if (!ret) return false; } return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), forward_ocl(inputs_arr, outputs_arr, internals_arr)) std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); const Mat& inpMat = inputs[0]; CV_Assert(outputs.size() == sliceRanges.size()); for (size_t i = 0; i < outputs.size(); i++) { inpMat(sliceRanges[i]).copyTo(outputs[i]); } } #ifdef HAVE_INF_ENGINE virtual Ptr initInfEngine(const std::vector >& inputs) CV_OVERRIDE { #if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2018R5) InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]); InferenceEngine::LayerParams lp; lp.name = name; lp.type = "Crop"; lp.precision = InferenceEngine::Precision::FP32; std::shared_ptr ieLayer(new InferenceEngine::CropLayer(lp)); CV_Assert(sliceRanges.size() == 1); int from, to, step; if (preferableTarget == DNN_TARGET_MYRIAD) { from = 1; to = sliceRanges[0].size() + 1; step = 1; } else { from = sliceRanges[0].size() - 1; to = -1; step = -1; } for (int i = from; i != to; i += step) { ieLayer->axis.push_back(i); ieLayer->offset.push_back(sliceRanges[0][i].start); ieLayer->dim.push_back(sliceRanges[0][i].end - sliceRanges[0][i].start); } return Ptr(new InfEngineBackendNode(ieLayer)); #else return Ptr(); #endif // IE < R5 } #endif }; Ptr SliceLayer::create(const LayerParams& params) { return Ptr(new SliceLayerImpl(params)); } } }