/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/photo.hpp" #include "opencv2/imgproc.hpp" #include "hdr_common.hpp" namespace cv { class AlignMTBImpl : public AlignMTB { public: AlignMTBImpl(int max_bits, int exclude_range, bool cut) : max_bits(max_bits), exclude_range(exclude_range), cut(cut), name("AlignMTB") { } void process(InputArrayOfArrays src, std::vector& dst, const std::vector& times, InputArray response) { process(src, dst); } void process(InputArrayOfArrays _src, std::vector& dst) { std::vector src; _src.getMatVector(src); checkImageDimensions(src); dst.resize(src.size()); size_t pivot = src.size() / 2; dst[pivot] = src[pivot]; Mat gray_base; cvtColor(src[pivot], gray_base, COLOR_RGB2GRAY); std::vector shifts; for(size_t i = 0; i < src.size(); i++) { if(i == pivot) { shifts.push_back(Point(0, 0)); continue; } Mat gray; cvtColor(src[i], gray, COLOR_RGB2GRAY); Point shift; calculateShift(gray_base, gray, shift); shifts.push_back(shift); shiftMat(src[i], dst[i], shift); } if(cut) { Point max(0, 0), min(0, 0); for(size_t i = 0; i < shifts.size(); i++) { if(shifts[i].x > max.x) { max.x = shifts[i].x; } if(shifts[i].y > max.y) { max.y = shifts[i].y; } if(shifts[i].x < min.x) { min.x = shifts[i].x; } if(shifts[i].y < min.y) { min.y = shifts[i].y; } } Point size = dst[0].size(); for(size_t i = 0; i < dst.size(); i++) { dst[i] = dst[i](Rect(max, min + size)); } } } void calculateShift(InputArray _img0, InputArray _img1, Point& shift) { Mat img0 = _img0.getMat(); Mat img1 = _img1.getMat(); CV_Assert(img0.channels() == 1 && img0.type() == img1.type()); CV_Assert(img0.size() == img0.size()); int maxlevel = static_cast(log((double)max(img0.rows, img0.cols)) / log(2.0)) - 1; maxlevel = min(maxlevel, max_bits - 1); std::vector pyr0; std::vector pyr1; buildPyr(img0, pyr0, maxlevel); buildPyr(img1, pyr1, maxlevel); shift = Point(0, 0); for(int level = maxlevel; level >= 0; level--) { shift *= 2; Mat tb1, tb2, eb1, eb2; computeBitmaps(pyr0[level], tb1, eb1); computeBitmaps(pyr1[level], tb2, eb2); int min_err = pyr0[level].total(); Point new_shift(shift); for(int i = -1; i <= 1; i++) { for(int j = -1; j <= 1; j++) { Point test_shift = shift + Point(i, j); Mat shifted_tb2, shifted_eb2, diff; shiftMat(tb2, shifted_tb2, test_shift); shiftMat(eb2, shifted_eb2, test_shift); bitwise_xor(tb1, shifted_tb2, diff); bitwise_and(diff, eb1, diff); bitwise_and(diff, shifted_eb2, diff); int err = countNonZero(diff); if(err < min_err) { new_shift = test_shift; min_err = err; } } } shift = new_shift; } } void shiftMat(InputArray _src, OutputArray _dst, const Point shift) { Mat src = _src.getMat(); _dst.create(src.size(), src.type()); Mat dst = _dst.getMat(); Mat res = Mat::zeros(src.size(), src.type()); int width = src.cols - abs(shift.x); int height = src.rows - abs(shift.y); Rect dst_rect(max(shift.x, 0), max(shift.y, 0), width, height); Rect src_rect(max(-shift.x, 0), max(-shift.y, 0), width, height); src(src_rect).copyTo(res(dst_rect)); res.copyTo(dst); } int getMaxBits() const { return max_bits; } void setMaxBits(int val) { max_bits = val; } int getExcludeRange() const { return exclude_range; } void setExcludeRange(int val) { exclude_range = val; } bool getCut() const { return cut; } void setCut(bool val) { cut = val; } void write(FileStorage& fs) const { fs << "name" << name << "max_bits" << max_bits << "exclude_range" << exclude_range << "cut" << static_cast(cut); } void read(const FileNode& fn) { FileNode n = fn["name"]; CV_Assert(n.isString() && String(n) == name); max_bits = fn["max_bits"]; exclude_range = fn["exclude_range"]; int cut_val = fn["cut"]; cut = static_cast(cut_val); } void computeBitmaps(Mat& img, Mat& tb, Mat& eb) { int median = getMedian(img); compare(img, median, tb, CMP_GT); compare(abs(img - median), exclude_range, eb, CMP_GT); } protected: String name; int max_bits, exclude_range; bool cut; void downsample(Mat& src, Mat& dst) { dst = Mat(src.rows / 2, src.cols / 2, CV_8UC1); int offset = src.cols * 2; uchar *src_ptr = src.ptr(); uchar *dst_ptr = dst.ptr(); for(int y = 0; y < dst.rows; y ++) { uchar *ptr = src_ptr; for(int x = 0; x < dst.cols; x++) { dst_ptr[0] = ptr[0]; dst_ptr++; ptr += 2; } src_ptr += offset; } } void buildPyr(Mat& img, std::vector& pyr, int maxlevel) { pyr.resize(maxlevel + 1); pyr[0] = img.clone(); for(int level = 0; level < maxlevel; level++) { downsample(pyr[level], pyr[level + 1]); } } int getMedian(Mat& img) { int channels = 0; Mat hist; int hist_size = LDR_SIZE; float range[] = {0, LDR_SIZE} ; const float* ranges[] = {range}; calcHist(&img, 1, &channels, Mat(), hist, 1, &hist_size, ranges); float *ptr = hist.ptr(); int median = 0, sum = 0; int thresh = img.total() / 2; while(sum < thresh && median < LDR_SIZE) { sum += static_cast(ptr[median]); median++; } return median; } }; Ptr createAlignMTB(int max_bits, int exclude_range, bool cut) { return new AlignMTBImpl(max_bits, exclude_range, cut); } class floatIndexCmp { public: floatIndexCmp(std::vector data) : data(data) { } bool operator() (int i,int j) { return data[i] < data[j]; } protected: std::vector data; }; class GhostbusterOrderImpl : public GhostbusterOrder { public: GhostbusterOrderImpl(int underexp, int overexp) : underexp(underexp), overexp(overexp), name("GhostbusterOrder") { } void process(InputArrayOfArrays src, OutputArray dst, std::vector& times, Mat response) { process(src, dst); } void process(InputArrayOfArrays src, OutputArray dst) { std::vector unsorted_images; src.getMatVector(unsorted_images); checkImageDimensions(unsorted_images); std::vector images; sortImages(unsorted_images, images); int channels = images[0].channels(); dst.create(images[0].size(), CV_8U); Mat res = Mat::zeros(images[0].size(), CV_8U); std::vector splitted(channels); split(images[0], splitted); for(size_t i = 0; i < images.size() - 1; i++) { std::vector next_splitted(channels); split(images[i + 1], next_splitted); for(int c = 0; c < channels; c++) { Mat exposed = (splitted[c] >= underexp) & (splitted[c] <= overexp); exposed &= (next_splitted[c] >= underexp) & (next_splitted[c] <= overexp); Mat ghost = (splitted[c] > next_splitted[c]) & exposed; res |= ghost; } splitted = next_splitted; } res.copyTo(dst.getMat()); } int getUnderexp() {return underexp;} void setUnderexp(int value) {underexp = value;} int getOverexp() {return overexp;} void setOverexp(int value) {overexp = value;} void write(FileStorage& fs) const { fs << "name" << name << "overexp" << overexp << "underexp" << underexp; } void read(const FileNode& fn) { FileNode n = fn["name"]; CV_Assert(n.isString() && String(n) == name); overexp = fn["overexp"]; underexp = fn["underexp"]; } protected: int overexp, underexp; String name; void sortImages(std::vector& images, std::vector& sorted) { std::vectorindices(images.size()); std::vectormeans(images.size()); for(size_t i = 0; i < images.size(); i++) { indices[i] = i; means[i] = mean(mean(images[i]))[0]; } sort(indices.begin(), indices.end(), floatIndexCmp(means)); sorted.resize(images.size()); for(size_t i = 0; i < images.size(); i++) { sorted[i] = images[indices[i]]; } } }; Ptr createGhostbusterOrder(int underexp, int overexp) { return new GhostbusterOrderImpl(underexp, overexp); } class GhostbusterPredictImpl : public GhostbusterPredict { public: GhostbusterPredictImpl(int thresh, int underexp, int overexp) : thresh(thresh), underexp(underexp), overexp(overexp), name("GhostbusterPredict") { } void process(InputArrayOfArrays src, OutputArray dst, std::vector& times, Mat response) { std::vector images; src.getMatVector(images); checkImageDimensions(images); int channels = images[0].channels(); dst.create(images[0].size(), CV_8U); Mat res = Mat::zeros(images[0].size(), CV_8U); Mat radiance; LUT(images[0], response, radiance); std::vector splitted(channels); split(radiance, splitted); std::vector resp_split(channels); split(response, resp_split); for(size_t i = 0; i < images.size() - 1; i++) { std::vector next_splitted(channels); LUT(images[i + 1], response, radiance); split(radiance, next_splitted); for(int c = 0; c < channels; c++) { Mat predicted = splitted[c] / times[i] * times[i + 1]; Mat low = max(thresh, next_splitted[c]) - thresh; Mat high = min(255 - thresh, next_splitted[c]) + thresh; low.convertTo(low, CV_8U); high.convertTo(high, CV_8U); LUT(low, resp_split[c], low); LUT(high, resp_split[c], high); Mat exposed = (splitted[c] >= underexp) & (splitted[c] <= overexp); exposed &= (next_splitted[c] >= underexp) & (next_splitted[c] <= overexp); Mat ghost = (low < predicted) & (predicted < high); ghost &= exposed; res |= ghost; } splitted = next_splitted; } res.copyTo(dst.getMat()); } virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector& times) { Mat response = linearResponse(3); response.at(0) = response.at(1); process(src, dst, times, response); } CV_WRAP virtual int getThreshold() {return thresh;} CV_WRAP virtual void setThreshold(int value) {thresh = value;} int getUnderexp() {return underexp;} void setUnderexp(int value) {underexp = value;} int getOverexp() {return overexp;} void setOverexp(int value) {overexp = value;} void write(FileStorage& fs) const { fs << "name" << name << "overexp" << overexp << "underexp" << underexp << "thresh" << thresh; } void read(const FileNode& fn) { FileNode n = fn["name"]; CV_Assert(n.isString() && String(n) == name); overexp = fn["overexp"]; underexp = fn["underexp"]; thresh = fn["thresh"]; } protected: int thresh, underexp, overexp; String name; }; Ptr createGhostbusterPredict(int thresh, int underexp, int overexp) { return new GhostbusterPredictImpl(thresh, underexp, overexp); } class GhostbusterBitmapImpl : public GhostbusterBitmap { public: GhostbusterBitmapImpl(int exclude) : exclude(exclude), name("GhostbusterBitmap") { } void process(InputArrayOfArrays src, OutputArray dst, std::vector& times, Mat response) { process(src, dst); } void process(InputArrayOfArrays src, OutputArray dst) { std::vector images; src.getMatVector(images); checkImageDimensions(images); int channels = images[0].channels(); dst.create(images[0].size(), CV_8U); Mat res = Mat::zeros(images[0].size(), CV_8U); Ptr MTB = createAlignMTB(); MTB->setExcludeRange(exclude); for(size_t i = 0; i < images.size(); i++) { Mat gray; if(channels == 1) { gray = images[i]; } else { cvtColor(images[i], gray, COLOR_RGB2GRAY); } Mat tb, eb; MTB->computeBitmaps(gray, tb, eb); tb &= eb & 1; res += tb; } res = (res > 0) & (res < images.size()); res.copyTo(dst.getMat()); } int getExclude() {return exclude;} void setExclude(int value) {exclude = value;} void write(FileStorage& fs) const { fs << "name" << name << "exclude" << exclude; } void read(const FileNode& fn) { FileNode n = fn["name"]; CV_Assert(n.isString() && String(n) == name); exclude = fn["exclude"]; } protected: int exclude; String name; }; Ptr createGhostbusterBitmap(int exclude) { return new GhostbusterBitmapImpl(exclude); } }