/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Nathan, liujun@multicorewareinc.com // Peng Xiao, pengxiao@outlook.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include <functional> #include <iterator> #include <vector> #include "opencl_kernels.hpp" using namespace cv; using namespace cv::ocl; using namespace std; static const int OPT_SIZE = 100; static const char * T_ARR [] = { "uchar", "char", "ushort", "short", "int", "float -D T_FLOAT", "double"}; template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &trainIdx, const oclMat &distance, int distType) { cv::ocl::Context *ctx = query.clCxt; size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= 2 * BLOCK_SIZE ? MAX_DESC_LEN : 2 * BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); int block_size = BLOCK_SIZE; int m_size = MAX_DESC_LEN; vector< pair<size_t, const void *> > args; char opt [OPT_SIZE] = ""; sprintf(opt, "-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", T_ARR[query.depth()], distType, block_size, m_size); if(globalSize[0] != 0) { args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); args.push_back( make_pair( smemSize, (void *)NULL)); args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); std::string kernelName = "BruteForceMatch_UnrollMatch"; openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); } } template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > void matchUnrolledCached(const oclMat /*query*/, const oclMat * /*trains*/, int /*n*/, const oclMat /*mask*/, const oclMat &/*bestTrainIdx*/, const oclMat & /*bestImgIdx*/, const oclMat & /*bestDistance*/, int /*distType*/) { } template < int BLOCK_SIZE/*, typename Mask*/ > void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &trainIdx, const oclMat &distance, int distType) { cv::ocl::Context *ctx = query.clCxt; size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); int block_size = BLOCK_SIZE; vector< pair<size_t, const void *> > args; char opt [OPT_SIZE] = ""; sprintf(opt, "-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d", T_ARR[query.depth()], distType, block_size); if(globalSize[0] != 0) { args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); args.push_back( make_pair( smemSize, (void *)NULL)); args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); std::string kernelName = "BruteForceMatch_Match"; openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); } } template < int BLOCK_SIZE/*, typename Mask*/ > void match(const oclMat /*query*/, const oclMat * /*trains*/, int /*n*/, const oclMat /*mask*/, const oclMat &/*bestTrainIdx*/, const oclMat & /*bestImgIdx*/, const oclMat & /*bestDistance*/, int /*distType*/) { } //radius_matchUnrolledCached template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/, const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType) { cv::ocl::Context *ctx = query.clCxt; size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); int block_size = BLOCK_SIZE; int m_size = MAX_DESC_LEN; vector< pair<size_t, const void *> > args; char opt [OPT_SIZE] = ""; sprintf(opt, "-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", T_ARR[query.depth()], distType, block_size, m_size); if(globalSize[0] != 0) { args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); args.push_back( make_pair( sizeof(cl_float), (void *)&maxDistance )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&nMatches.data )); args.push_back( make_pair( smemSize, (void *)NULL)); args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.step )); std::string kernelName = "BruteForceMatch_RadiusUnrollMatch"; openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); } } //radius_match template < int BLOCK_SIZE/*, typename Mask*/ > void radius_match(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/, const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType) { cv::ocl::Context *ctx = query.clCxt; size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); int block_size = BLOCK_SIZE; vector< pair<size_t, const void *> > args; char opt [OPT_SIZE] = ""; sprintf(opt, "-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d", T_ARR[query.depth()], distType, block_size); if(globalSize[0] != 0) { args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); args.push_back( make_pair( sizeof(cl_float), (void *)&maxDistance )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&nMatches.data )); args.push_back( make_pair( smemSize, (void *)NULL)); args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.step )); std::string kernelName = "BruteForceMatch_RadiusMatch"; openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); } } static void matchDispatcher(const oclMat &query, const oclMat &train, const oclMat &mask, const oclMat &trainIdx, const oclMat &distance, int distType) { const oclMat zeroMask; const oclMat &tempMask = mask.data ? mask : zeroMask; bool is_cpu = isCpuDevice(); if (query.cols <= 64) { matchUnrolledCached<16, 64>(query, train, tempMask, trainIdx, distance, distType); } else if (query.cols <= 128 && !is_cpu) { matchUnrolledCached<16, 128>(query, train, tempMask, trainIdx, distance, distType); } else { match<16>(query, train, tempMask, trainIdx, distance, distType); } } static void matchDispatcher(const oclMat &query, const oclMat *trains, int n, const oclMat &mask, const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, int distType) { const oclMat zeroMask; const oclMat &tempMask = mask.data ? mask : zeroMask; bool is_cpu = isCpuDevice(); if (query.cols <= 64) { matchUnrolledCached<16, 64>(query, trains, n, tempMask, trainIdx, imgIdx, distance, distType); } else if (query.cols <= 128 && !is_cpu) { matchUnrolledCached<16, 128>(query, trains, n, tempMask, trainIdx, imgIdx, distance, distType); } else { match<16>(query, trains, n, tempMask, trainIdx, imgIdx, distance, distType); } } //radius matchDispatcher static void matchDispatcher(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &mask, const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType) { const oclMat zeroMask; const oclMat &tempMask = mask.data ? mask : zeroMask; bool is_cpu = isCpuDevice(); if (query.cols <= 64) { matchUnrolledCached<16, 64>(query, train, maxDistance, tempMask, trainIdx, distance, nMatches, distType); } else if (query.cols <= 128 && !is_cpu) { matchUnrolledCached<16, 128>(query, train, maxDistance, tempMask, trainIdx, distance, nMatches, distType); } else { radius_match<16>(query, train, maxDistance, tempMask, trainIdx, distance, nMatches, distType); } } //knn match Dispatcher template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &trainIdx, const oclMat &distance, int distType) { cv::ocl::Context *ctx = query.clCxt; size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= BLOCK_SIZE ? MAX_DESC_LEN : BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); int block_size = BLOCK_SIZE; int m_size = MAX_DESC_LEN; vector< pair<size_t, const void *> > args; char opt [OPT_SIZE] = ""; sprintf(opt, "-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", T_ARR[query.depth()], distType, block_size, m_size); if(globalSize[0] != 0) { args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); args.push_back( make_pair( smemSize, (void *)NULL)); args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); std::string kernelName = "BruteForceMatch_knnUnrollMatch"; openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); } } template < int BLOCK_SIZE/*, typename Mask*/ > void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &trainIdx, const oclMat &distance, int distType) { cv::ocl::Context *ctx = query.clCxt; size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); int block_size = BLOCK_SIZE; vector< pair<size_t, const void *> > args; char opt [OPT_SIZE] = ""; sprintf(opt, "-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d", T_ARR[query.depth()], distType, block_size); if(globalSize[0] != 0) { args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); args.push_back( make_pair( smemSize, (void *)NULL)); args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); std::string kernelName = "BruteForceMatch_knnMatch"; openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); } } template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ > void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType) { cv::ocl::Context *ctx = query.clCxt; size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); int block_size = BLOCK_SIZE; int m_size = MAX_DESC_LEN; vector< pair<size_t, const void *> > args; char opt [OPT_SIZE] = ""; sprintf(opt, "-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", T_ARR[query.depth()], distType, block_size, m_size); if(globalSize[0] != 0) { args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&allDist.data )); args.push_back( make_pair( smemSize, (void *)NULL)); args.push_back( make_pair( sizeof(cl_int), (void *)&block_size )); args.push_back( make_pair( sizeof(cl_int), (void *)&m_size )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); std::string kernelName = "BruteForceMatch_calcDistanceUnrolled"; openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); } } template < int BLOCK_SIZE/*, typename Mask*/ > void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType) { cv::ocl::Context *ctx = query.clCxt; size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); int block_size = BLOCK_SIZE; vector< pair<size_t, const void *> > args; char opt [OPT_SIZE] = ""; sprintf(opt, "-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d", T_ARR[query.depth()], distType, block_size); if(globalSize[0] != 0) { args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&train.data )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&allDist.data )); args.push_back( make_pair( smemSize, (void *)NULL)); args.push_back( make_pair( sizeof(cl_int), (void *)&block_size )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); std::string kernelName = "BruteForceMatch_calcDistance"; openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt); } } /////////////////////////////////////////////////////////////////////////////// // Calc Distance dispatcher static void calcDistanceDispatcher(const oclMat &query, const oclMat &train, const oclMat &mask, const oclMat &allDist, int distType) { if (query.cols <= 64) { calcDistanceUnrolled<16, 64>(query, train, mask, allDist, distType); } else if (query.cols <= 128) { calcDistanceUnrolled<16, 128>(query, train, mask, allDist, distType); } else { calcDistance<16>(query, train, mask, allDist, distType); } } static void match2Dispatcher(const oclMat &query, const oclMat &train, const oclMat &mask, const oclMat &trainIdx, const oclMat &distance, int distType) { bool is_cpu = isCpuDevice(); if (query.cols <= 64) { knn_matchUnrolledCached<16, 64>(query, train, mask, trainIdx, distance, distType); } else if (query.cols <= 128 && !is_cpu) { knn_matchUnrolledCached<16, 128>(query, train, mask, trainIdx, distance, distType); } else { knn_match<16>(query, train, mask, trainIdx, distance, distType); } } template <int BLOCK_SIZE> void findKnnMatch(int k, const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int /*distType*/) { cv::ocl::Context *ctx = trainIdx.clCxt; size_t globalSize[] = {trainIdx.rows * BLOCK_SIZE, 1, 1}; size_t localSize[] = {BLOCK_SIZE, 1, 1}; int block_size = BLOCK_SIZE; std::string kernelName = "BruteForceMatch_findBestMatch"; for (int i = 0; i < k; ++i) { vector< pair<size_t, const void *> > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&allDist.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&trainIdx.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&distance.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&i)); args.push_back( make_pair( sizeof(cl_int), (void *)&block_size )); //args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows )); //args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols )); //args.push_back( make_pair( sizeof(cl_int), (void *)&query.step )); openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1); } } static void findKnnMatchDispatcher(int k, const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int distType) { findKnnMatch<256>(k, trainIdx, distance, allDist, distType); } static void kmatchDispatcher(const oclMat &query, const oclMat &train, int k, const oclMat &mask, const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int distType) { const oclMat zeroMask; const oclMat &tempMask = mask.data ? mask : zeroMask; if (k == 2) { match2Dispatcher(query, train, tempMask, trainIdx, distance, distType); } else { calcDistanceDispatcher(query, train, tempMask, allDist, distType); findKnnMatchDispatcher(k, trainIdx, distance, allDist, distType); } } cv::ocl::BruteForceMatcher_OCL_base::BruteForceMatcher_OCL_base(DistType distType_) : distType(distType_) { } void cv::ocl::BruteForceMatcher_OCL_base::add(const vector<oclMat> &descCollection) { trainDescCollection.insert(trainDescCollection.end(), descCollection.begin(), descCollection.end()); } const vector<oclMat> &cv::ocl::BruteForceMatcher_OCL_base::getTrainDescriptors() const { return trainDescCollection; } void cv::ocl::BruteForceMatcher_OCL_base::clear() { trainDescCollection.clear(); } bool cv::ocl::BruteForceMatcher_OCL_base::empty() const { return trainDescCollection.empty(); } bool cv::ocl::BruteForceMatcher_OCL_base::isMaskSupported() const { return true; } void cv::ocl::BruteForceMatcher_OCL_base::matchSingle(const oclMat &query, const oclMat &train, oclMat &trainIdx, oclMat &distance, const oclMat &mask) { if (query.empty() || train.empty()) return; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.cols == query.cols && train.type() == query.type()); ensureSizeIsEnough(1, query.rows, CV_32S, trainIdx); ensureSizeIsEnough(1, query.rows, CV_32F, distance); matchDispatcher(query, train, mask, trainIdx, distance, distType); return; } void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &distance, vector<DMatch> &matches) { if (trainIdx.empty() || distance.empty()) return; Mat trainIdxCPU(trainIdx); Mat distanceCPU(distance); matchConvert(trainIdxCPU, distanceCPU, matches); } void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat &trainIdx, const Mat &distance, vector<DMatch> &matches) { if (trainIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols); const int nQuery = trainIdx.cols; matches.clear(); matches.reserve(nQuery); const int *trainIdx_ptr = trainIdx.ptr<int>(); const float *distance_ptr = distance.ptr<float>(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; if (trainIdx == -1) continue; float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, 0, distance); matches.push_back(m); } } void cv::ocl::BruteForceMatcher_OCL_base::match(const oclMat &query, const oclMat &train, vector<DMatch> &matches, const oclMat &mask) { assert(mask.empty()); // mask is not supported at the moment oclMat trainIdx, distance; matchSingle(query, train, trainIdx, distance, mask); matchDownload(trainIdx, distance, matches); } void cv::ocl::BruteForceMatcher_OCL_base::makeGpuCollection(oclMat &trainCollection, oclMat &maskCollection, const vector<oclMat> &masks) { if (empty()) return; if (masks.empty()) { Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(oclMat))); oclMat *trainCollectionCPU_ptr = trainCollectionCPU.ptr<oclMat>(); for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr) *trainCollectionCPU_ptr = trainDescCollection[i]; trainCollection.upload(trainCollectionCPU); maskCollection.release(); } else { CV_Assert(masks.size() == trainDescCollection.size()); Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(oclMat))); Mat maskCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(oclMat))); oclMat *trainCollectionCPU_ptr = trainCollectionCPU.ptr<oclMat>(); oclMat *maskCollectionCPU_ptr = maskCollectionCPU.ptr<oclMat>(); for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr, ++maskCollectionCPU_ptr) { const oclMat &train = trainDescCollection[i]; const oclMat &mask = masks[i]; CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.cols == train.rows)); *trainCollectionCPU_ptr = train; *maskCollectionCPU_ptr = mask; } trainCollection.upload(trainCollectionCPU); maskCollection.upload(maskCollectionCPU); } } void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat &query, const oclMat &trainCollection, oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, const oclMat &masks) { if (query.empty() || trainCollection.empty()) return; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); const int nQuery = query.rows; ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32S, imgIdx); ensureSizeIsEnough(1, nQuery, CV_32F, distance); matchDispatcher(query, (const oclMat *)trainCollection.ptr(), trainCollection.cols, masks, trainIdx, imgIdx, distance, distType); return; } void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, vector<DMatch> &matches) { if (trainIdx.empty() || imgIdx.empty() || distance.empty()) return; Mat trainIdxCPU(trainIdx); Mat imgIdxCPU(imgIdx); Mat distanceCPU(distance); matchConvert(trainIdxCPU, imgIdxCPU, distanceCPU, matches); } void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, vector<DMatch> &matches) { if (trainIdx.empty() || imgIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.cols == trainIdx.cols); CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols); const int nQuery = trainIdx.cols; matches.clear(); matches.reserve(nQuery); const int *trainIdx_ptr = trainIdx.ptr<int>(); const int *imgIdx_ptr = imgIdx.ptr<int>(); const float *distance_ptr = distance.ptr<float>(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; if (trainIdx == -1) continue; int imgIdx = *imgIdx_ptr; float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, imgIdx, distance); matches.push_back(m); } } void cv::ocl::BruteForceMatcher_OCL_base::match(const oclMat &query, vector<DMatch> &matches, const vector<oclMat> &masks) { oclMat trainCollection; oclMat maskCollection; makeGpuCollection(trainCollection, maskCollection, masks); oclMat trainIdx, imgIdx, distance; matchCollection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection); matchDownload(trainIdx, imgIdx, distance, matches); } // knn match void cv::ocl::BruteForceMatcher_OCL_base::knnMatchSingle(const oclMat &query, const oclMat &train, oclMat &trainIdx, oclMat &distance, oclMat &allDist, int k, const oclMat &mask) { if (query.empty() || train.empty()) return; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.type() == query.type() && train.cols == query.cols); const int nQuery = query.rows; const int nTrain = train.rows; if (k == 2) { ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); } else { ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx); ensureSizeIsEnough(nQuery, k, CV_32F, distance); ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist); } trainIdx.setTo(Scalar::all(-1)); kmatchDispatcher(query, train, k, mask, trainIdx, distance, allDist, distType); return; } void cv::ocl::BruteForceMatcher_OCL_base::knnMatchDownload(const oclMat &trainIdx, const oclMat &distance, vector< vector<DMatch> > &matches, bool compactResult) { if (trainIdx.empty() || distance.empty()) return; Mat trainIdxCPU(trainIdx); Mat distanceCPU(distance); knnMatchConvert(trainIdxCPU, distanceCPU, matches, compactResult); } void cv::ocl::BruteForceMatcher_OCL_base::knnMatchConvert(const Mat &trainIdx, const Mat &distance, vector< vector<DMatch> > &matches, bool compactResult) { if (trainIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC2 || trainIdx.type() == CV_32SC1); CV_Assert(distance.type() == CV_32FC2 || distance.type() == CV_32FC1); CV_Assert(distance.size() == trainIdx.size()); CV_Assert(trainIdx.isContinuous() && distance.isContinuous()); const int nQuery = trainIdx.type() == CV_32SC2 ? trainIdx.cols : trainIdx.rows; const int k = trainIdx.type() == CV_32SC2 ? 2 : trainIdx.cols; matches.clear(); matches.reserve(nQuery); const int *trainIdx_ptr = trainIdx.ptr<int>(); const float *distance_ptr = distance.ptr<float>(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { matches.push_back(vector<DMatch>()); vector<DMatch> &curMatches = matches.back(); curMatches.reserve(k); for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; if (trainIdx != -1) { float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, 0, distance); curMatches.push_back(m); } } if (compactResult && curMatches.empty()) matches.pop_back(); } } void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat &query, const oclMat &train, vector< vector<DMatch> > &matches , int k, const oclMat &mask, bool compactResult) { oclMat trainIdx, distance, allDist; knnMatchSingle(query, train, trainIdx, distance, allDist, k, mask); knnMatchDownload(trainIdx, distance, matches, compactResult); } void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Collection(const oclMat &query, const oclMat &trainCollection, oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, const oclMat &/*maskCollection*/) { if (query.empty() || trainCollection.empty()) return; // typedef void (*caller_t)(const oclMat & query, const oclMat & trains, const oclMat & masks, // const oclMat & trainIdx, const oclMat & imgIdx, const oclMat & distance); CV_Assert(query.channels() == 1 && query.depth() < CV_64F); const int nQuery = query.rows; ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32SC2, imgIdx); ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); trainIdx.setTo(Scalar::all(-1)); //caller_t func = callers[distType][query.depth()]; //CV_Assert(func != 0); //func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, cc, StreamAccessor::getStream(stream)); } void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Download(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, vector< vector<DMatch> > &matches, bool compactResult) { if (trainIdx.empty() || imgIdx.empty() || distance.empty()) return; Mat trainIdxCPU(trainIdx); Mat imgIdxCPU(imgIdx); Mat distanceCPU(distance); knnMatch2Convert(trainIdxCPU, imgIdxCPU, distanceCPU, matches, compactResult); } void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Convert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, vector< vector<DMatch> > &matches, bool compactResult) { if (trainIdx.empty() || imgIdx.empty() || distance.empty()) return; CV_Assert(trainIdx.type() == CV_32SC2); CV_Assert(imgIdx.type() == CV_32SC2 && imgIdx.cols == trainIdx.cols); CV_Assert(distance.type() == CV_32FC2 && distance.cols == trainIdx.cols); const int nQuery = trainIdx.cols; matches.clear(); matches.reserve(nQuery); const int *trainIdx_ptr = trainIdx.ptr<int>(); const int *imgIdx_ptr = imgIdx.ptr<int>(); const float *distance_ptr = distance.ptr<float>(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { matches.push_back(vector<DMatch>()); vector<DMatch> &curMatches = matches.back(); curMatches.reserve(2); for (int i = 0; i < 2; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; if (trainIdx != -1) { int imgIdx = *imgIdx_ptr; float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, imgIdx, distance); curMatches.push_back(m); } } if (compactResult && curMatches.empty()) matches.pop_back(); } } namespace { struct ImgIdxSetter { explicit inline ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {} inline void operator()(DMatch &m) const { m.imgIdx = imgIdx; } int imgIdx; }; } void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat &query, vector< vector<DMatch> > &matches, int k, const vector<oclMat> &masks, bool compactResult) { if (k == 2) { oclMat trainCollection; oclMat maskCollection; makeGpuCollection(trainCollection, maskCollection, masks); oclMat trainIdx, imgIdx, distance; knnMatch2Collection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection); knnMatch2Download(trainIdx, imgIdx, distance, matches); } else { if (query.empty() || empty()) return; vector< vector<DMatch> > curMatches; vector<DMatch> temp; temp.reserve(2 * k); matches.resize(query.rows); for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector<DMatch>::reserve), k)); for (size_t imgIdx = 0, size = trainDescCollection.size(); imgIdx < size; ++imgIdx) { knnMatch(query, trainDescCollection[imgIdx], curMatches, k, masks.empty() ? oclMat() : masks[imgIdx]); for (int queryIdx = 0; queryIdx < query.rows; ++queryIdx) { vector<DMatch> &localMatch = curMatches[queryIdx]; vector<DMatch> &globalMatch = matches[queryIdx]; for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(static_cast<int>(imgIdx))); temp.clear(); merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp)); globalMatch.clear(); const size_t count = std::min((size_t)k, temp.size()); copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch)); } } if (compactResult) { vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(), mem_fun_ref(&vector<DMatch>::empty)); matches.erase(new_end, matches.end()); } } } // radiusMatchSingle void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchSingle(const oclMat &query, const oclMat &train, oclMat &trainIdx, oclMat &distance, oclMat &nMatches, float maxDistance, const oclMat &mask) { if (query.empty() || train.empty()) return; const int nQuery = query.rows; const int nTrain = train.rows; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.type() == query.type() && train.cols == query.cols); CV_Assert(trainIdx.empty() || (trainIdx.rows == query.rows && trainIdx.size() == distance.size())); ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches); if (trainIdx.empty()) { ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32SC1, trainIdx); ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32FC1, distance); } nMatches.setTo(Scalar::all(0)); matchDispatcher(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType); return; } void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, vector< vector<DMatch> > &matches, bool compactResult) { if (trainIdx.empty() || distance.empty() || nMatches.empty()) return; Mat trainIdxCPU(trainIdx); Mat distanceCPU(distance); Mat nMatchesCPU(nMatches); radiusMatchConvert(trainIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult); } void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat &trainIdx, const Mat &distance, const Mat &nMatches, vector< vector<DMatch> > &matches, bool compactResult) { if (trainIdx.empty() || distance.empty() || nMatches.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size()); CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows); const int nQuery = trainIdx.rows; matches.clear(); matches.reserve(nQuery); const int *nMatches_ptr = nMatches.ptr<int>(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { const int *trainIdx_ptr = trainIdx.ptr<int>(queryIdx); const float *distance_ptr = distance.ptr<float>(queryIdx); const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols); if (nMatches == 0) { if (!compactResult) matches.push_back(vector<DMatch>()); continue; } matches.push_back(vector<DMatch>(nMatches)); vector<DMatch> &curMatches = matches.back(); for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, 0, distance); curMatches[i] = m; } sort(curMatches.begin(), curMatches.end()); } } void cv::ocl::BruteForceMatcher_OCL_base::radiusMatch(const oclMat &query, const oclMat &train, vector< vector<DMatch> > &matches, float maxDistance, const oclMat &mask, bool compactResult) { oclMat trainIdx, distance, nMatches; radiusMatchSingle(query, train, trainIdx, distance, nMatches, maxDistance, mask); radiusMatchDownload(trainIdx, distance, nMatches, matches, compactResult); } void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchCollection(const oclMat &query, oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, oclMat &nMatches, float /*maxDistance*/, const vector<oclMat> &masks) { if (query.empty() || empty()) return; #if 0 typedef void (*caller_t)(const oclMat & query, const oclMat * trains, int n, float maxDistance, const oclMat * masks, const oclMat & trainIdx, const oclMat & imgIdx, const oclMat & distance, const oclMat & nMatches); static const caller_t callers[3][6] = { { ocl_matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, ocl_matchL1_gpu<unsigned short>, matchL1_gpu<short>, ocl_matchL1_gpu<int>, matchL1_gpu<float> }, { 0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 0/*matchL2_gpu<int>*/, ocl_matchL2_gpu<float> }, { ocl_matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, ocl_matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, ocl_matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/ } }; #endif const int nQuery = query.rows; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size())); nMatches.create(1, nQuery, CV_32SC1); if (trainIdx.empty()) { trainIdx.create(nQuery, std::max((nQuery / 100), 10), CV_32SC1); imgIdx.create(nQuery, std::max((nQuery / 100), 10), CV_32SC1); distance.create(nQuery, std::max((nQuery / 100), 10), CV_32FC1); } nMatches.setTo(Scalar::all(0)); //caller_t func = callers[distType][query.depth()]; //CV_Assert(func != 0); vector<oclMat> trains_(trainDescCollection.begin(), trainDescCollection.end()); vector<oclMat> masks_(masks.begin(), masks.end()); /* func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0], trainIdx, imgIdx, distance, nMatches));*/ } void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, const oclMat &nMatches, vector< vector<DMatch> > &matches, bool compactResult) { if (trainIdx.empty() || imgIdx.empty() || distance.empty() || nMatches.empty()) return; Mat trainIdxCPU(trainIdx); Mat imgIdxCPU(imgIdx); Mat distanceCPU(distance); Mat nMatchesCPU(nMatches); radiusMatchConvert(trainIdxCPU, imgIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult); } void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, const Mat &nMatches, vector< vector<DMatch> > &matches, bool compactResult) { if (trainIdx.empty() || imgIdx.empty() || distance.empty() || nMatches.empty()) return; CV_Assert(trainIdx.type() == CV_32SC1); CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.size() == trainIdx.size()); CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size()); CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows); const int nQuery = trainIdx.rows; matches.clear(); matches.reserve(nQuery); const int *nMatches_ptr = nMatches.ptr<int>(); for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) { const int *trainIdx_ptr = trainIdx.ptr<int>(queryIdx); const int *imgIdx_ptr = imgIdx.ptr<int>(queryIdx); const float *distance_ptr = distance.ptr<float>(queryIdx); const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols); if (nMatches == 0) { if (!compactResult) matches.push_back(vector<DMatch>()); continue; } matches.push_back(vector<DMatch>()); vector<DMatch> &curMatches = matches.back(); curMatches.reserve(nMatches); for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) { int trainIdx = *trainIdx_ptr; int imgIdx = *imgIdx_ptr; float distance = *distance_ptr; DMatch m(queryIdx, trainIdx, imgIdx, distance); curMatches.push_back(m); } sort(curMatches.begin(), curMatches.end()); } } void cv::ocl::BruteForceMatcher_OCL_base::radiusMatch(const oclMat &query, vector< vector<DMatch> > &matches, float maxDistance, const vector<oclMat> &masks, bool compactResult) { oclMat trainIdx, imgIdx, distance, nMatches; radiusMatchCollection(query, trainIdx, imgIdx, distance, nMatches, maxDistance, masks); radiusMatchDownload(trainIdx, imgIdx, distance, nMatches, matches, compactResult); }