// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "stat.hpp" namespace cv { template struct Sum_SIMD { int operator () (const T *, const uchar *, ST *, int, int) const { return 0; } }; template inline void addChannels(DT * dst, ST * buf, int cn) { for (int i = 0; i < 4; ++i) dst[i % cn] += buf[i]; } #if CV_SSE2 template <> struct Sum_SIMD { int operator () (const schar * src0, const uchar * mask, int * dst, int len, int cn) const { if (mask || (cn != 1 && cn != 2 && cn != 4) || !USE_SSE2) return 0; int x = 0; __m128i v_zero = _mm_setzero_si128(), v_sum = v_zero; for ( ; x <= len - 16; x += 16) { __m128i v_src = _mm_loadu_si128((const __m128i *)(src0 + x)); __m128i v_half = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, v_src), 8); v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_half), 16)); v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_half), 16)); v_half = _mm_srai_epi16(_mm_unpackhi_epi8(v_zero, v_src), 8); v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_half), 16)); v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_half), 16)); } for ( ; x <= len - 8; x += 8) { __m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src0 + x))), 8); v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); } int CV_DECL_ALIGNED(16) ar[4]; _mm_store_si128((__m128i*)ar, v_sum); addChannels(dst, ar, cn); return x / cn; } }; template <> struct Sum_SIMD { int operator () (const int * src0, const uchar * mask, double * dst, int len, int cn) const { if (mask || (cn != 1 && cn != 2 && cn != 4) || !USE_SSE2) return 0; int x = 0; __m128d v_zero = _mm_setzero_pd(), v_sum0 = v_zero, v_sum1 = v_zero; for ( ; x <= len - 4; x += 4) { __m128i v_src = _mm_loadu_si128((__m128i const *)(src0 + x)); v_sum0 = _mm_add_pd(v_sum0, _mm_cvtepi32_pd(v_src)); v_sum1 = _mm_add_pd(v_sum1, _mm_cvtepi32_pd(_mm_srli_si128(v_src, 8))); } double CV_DECL_ALIGNED(16) ar[4]; _mm_store_pd(ar, v_sum0); _mm_store_pd(ar + 2, v_sum1); addChannels(dst, ar, cn); return x / cn; } }; template <> struct Sum_SIMD { int operator () (const float * src0, const uchar * mask, double * dst, int len, int cn) const { if (mask || (cn != 1 && cn != 2 && cn != 4) || !USE_SSE2) return 0; int x = 0; __m128d v_zero = _mm_setzero_pd(), v_sum0 = v_zero, v_sum1 = v_zero; for ( ; x <= len - 4; x += 4) { __m128 v_src = _mm_loadu_ps(src0 + x); v_sum0 = _mm_add_pd(v_sum0, _mm_cvtps_pd(v_src)); v_src = _mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_src), 8)); v_sum1 = _mm_add_pd(v_sum1, _mm_cvtps_pd(v_src)); } double CV_DECL_ALIGNED(16) ar[4]; _mm_store_pd(ar, v_sum0); _mm_store_pd(ar + 2, v_sum1); addChannels(dst, ar, cn); return x / cn; } }; #elif CV_NEON template <> struct Sum_SIMD { int operator () (const uchar * src0, const uchar * mask, int * dst, int len, int cn) const { if (mask || (cn != 1 && cn != 2 && cn != 4)) return 0; int x = 0; uint32x4_t v_sum = vdupq_n_u32(0u); for ( ; x <= len - 16; x += 16) { uint8x16_t v_src = vld1q_u8(src0 + x); uint16x8_t v_half = vmovl_u8(vget_low_u8(v_src)); v_sum = vaddw_u16(v_sum, vget_low_u16(v_half)); v_sum = vaddw_u16(v_sum, vget_high_u16(v_half)); v_half = vmovl_u8(vget_high_u8(v_src)); v_sum = vaddw_u16(v_sum, vget_low_u16(v_half)); v_sum = vaddw_u16(v_sum, vget_high_u16(v_half)); } for ( ; x <= len - 8; x += 8) { uint16x8_t v_src = vmovl_u8(vld1_u8(src0 + x)); v_sum = vaddw_u16(v_sum, vget_low_u16(v_src)); v_sum = vaddw_u16(v_sum, vget_high_u16(v_src)); } unsigned int CV_DECL_ALIGNED(16) ar[4]; vst1q_u32(ar, v_sum); addChannels(dst, ar, cn); return x / cn; } }; template <> struct Sum_SIMD { int operator () (const schar * src0, const uchar * mask, int * dst, int len, int cn) const { if (mask || (cn != 1 && cn != 2 && cn != 4)) return 0; int x = 0; int32x4_t v_sum = vdupq_n_s32(0); for ( ; x <= len - 16; x += 16) { int8x16_t v_src = vld1q_s8(src0 + x); int16x8_t v_half = vmovl_s8(vget_low_s8(v_src)); v_sum = vaddw_s16(v_sum, vget_low_s16(v_half)); v_sum = vaddw_s16(v_sum, vget_high_s16(v_half)); v_half = vmovl_s8(vget_high_s8(v_src)); v_sum = vaddw_s16(v_sum, vget_low_s16(v_half)); v_sum = vaddw_s16(v_sum, vget_high_s16(v_half)); } for ( ; x <= len - 8; x += 8) { int16x8_t v_src = vmovl_s8(vld1_s8(src0 + x)); v_sum = vaddw_s16(v_sum, vget_low_s16(v_src)); v_sum = vaddw_s16(v_sum, vget_high_s16(v_src)); } int CV_DECL_ALIGNED(16) ar[4]; vst1q_s32(ar, v_sum); addChannels(dst, ar, cn); return x / cn; } }; template <> struct Sum_SIMD { int operator () (const ushort * src0, const uchar * mask, int * dst, int len, int cn) const { if (mask || (cn != 1 && cn != 2 && cn != 4)) return 0; int x = 0; uint32x4_t v_sum = vdupq_n_u32(0u); for ( ; x <= len - 8; x += 8) { uint16x8_t v_src = vld1q_u16(src0 + x); v_sum = vaddw_u16(v_sum, vget_low_u16(v_src)); v_sum = vaddw_u16(v_sum, vget_high_u16(v_src)); } for ( ; x <= len - 4; x += 4) v_sum = vaddw_u16(v_sum, vld1_u16(src0 + x)); unsigned int CV_DECL_ALIGNED(16) ar[4]; vst1q_u32(ar, v_sum); addChannels(dst, ar, cn); return x / cn; } }; template <> struct Sum_SIMD { int operator () (const short * src0, const uchar * mask, int * dst, int len, int cn) const { if (mask || (cn != 1 && cn != 2 && cn != 4)) return 0; int x = 0; int32x4_t v_sum = vdupq_n_s32(0u); for ( ; x <= len - 8; x += 8) { int16x8_t v_src = vld1q_s16(src0 + x); v_sum = vaddw_s16(v_sum, vget_low_s16(v_src)); v_sum = vaddw_s16(v_sum, vget_high_s16(v_src)); } for ( ; x <= len - 4; x += 4) v_sum = vaddw_s16(v_sum, vld1_s16(src0 + x)); int CV_DECL_ALIGNED(16) ar[4]; vst1q_s32(ar, v_sum); addChannels(dst, ar, cn); return x / cn; } }; #endif template static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn ) { const T* src = src0; if( !mask ) { Sum_SIMD vop; int i = vop(src0, mask, dst, len, cn), k = cn % 4; src += i * cn; if( k == 1 ) { ST s0 = dst[0]; #if CV_ENABLE_UNROLLED for(; i <= len - 4; i += 4, src += cn*4 ) s0 += src[0] + src[cn] + src[cn*2] + src[cn*3]; #endif for( ; i < len; i++, src += cn ) s0 += src[0]; dst[0] = s0; } else if( k == 2 ) { ST s0 = dst[0], s1 = dst[1]; for( ; i < len; i++, src += cn ) { s0 += src[0]; s1 += src[1]; } dst[0] = s0; dst[1] = s1; } else if( k == 3 ) { ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; for( ; i < len; i++, src += cn ) { s0 += src[0]; s1 += src[1]; s2 += src[2]; } dst[0] = s0; dst[1] = s1; dst[2] = s2; } for( ; k < cn; k += 4 ) { src = src0 + i*cn + k; ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3]; for( ; i < len; i++, src += cn ) { s0 += src[0]; s1 += src[1]; s2 += src[2]; s3 += src[3]; } dst[k] = s0; dst[k+1] = s1; dst[k+2] = s2; dst[k+3] = s3; } return len; } int i, nzm = 0; if( cn == 1 ) { ST s = dst[0]; for( i = 0; i < len; i++ ) if( mask[i] ) { s += src[i]; nzm++; } dst[0] = s; } else if( cn == 3 ) { ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; for( i = 0; i < len; i++, src += 3 ) if( mask[i] ) { s0 += src[0]; s1 += src[1]; s2 += src[2]; nzm++; } dst[0] = s0; dst[1] = s1; dst[2] = s2; } else { for( i = 0; i < len; i++, src += cn ) if( mask[i] ) { int k = 0; #if CV_ENABLE_UNROLLED for( ; k <= cn - 4; k += 4 ) { ST s0, s1; s0 = dst[k] + src[k]; s1 = dst[k+1] + src[k+1]; dst[k] = s0; dst[k+1] = s1; s0 = dst[k+2] + src[k+2]; s1 = dst[k+3] + src[k+3]; dst[k+2] = s0; dst[k+3] = s1; } #endif for( ; k < cn; k++ ) dst[k] += src[k]; nzm++; } } return nzm; } static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn ) { return sum_(src, mask, dst, len, cn); } SumFunc getSumFunc(int depth) { static SumFunc sumTab[] = { (SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s, (SumFunc)sum16u, (SumFunc)sum16s, (SumFunc)sum32s, (SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f, 0 }; return sumTab[depth]; } #ifdef HAVE_OPENCL bool ocl_sum( InputArray _src, Scalar & res, int sum_op, InputArray _mask, InputArray _src2, bool calc2, const Scalar & res2 ) { CV_Assert(sum_op == OCL_OP_SUM || sum_op == OCL_OP_SUM_ABS || sum_op == OCL_OP_SUM_SQR); const ocl::Device & dev = ocl::Device::getDefault(); bool doubleSupport = dev.doubleFPConfig() > 0, haveMask = _mask.kind() != _InputArray::NONE, haveSrc2 = _src2.kind() != _InputArray::NONE; int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), kercn = cn == 1 && !haveMask ? ocl::predictOptimalVectorWidth(_src, _src2) : 1, mcn = std::max(cn, kercn); CV_Assert(!haveSrc2 || _src2.type() == type); int convert_cn = haveSrc2 ? mcn : cn; if ( (!doubleSupport && depth == CV_64F) || cn > 4 ) return false; int ngroups = dev.maxComputeUnits(), dbsize = ngroups * (calc2 ? 2 : 1); size_t wgs = dev.maxWorkGroupSize(); int ddepth = std::max(sum_op == OCL_OP_SUM_SQR ? CV_32F : CV_32S, depth), dtype = CV_MAKE_TYPE(ddepth, cn); CV_Assert(!haveMask || _mask.type() == CV_8UC1); int wgs2_aligned = 1; while (wgs2_aligned < (int)wgs) wgs2_aligned <<= 1; wgs2_aligned >>= 1; static const char * const opMap[3] = { "OP_SUM", "OP_SUM_ABS", "OP_SUM_SQR" }; char cvt[2][40]; String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D dstT1=%s -D ddepth=%d -D cn=%d" " -D convertToDT=%s -D %s -D WGS=%d -D WGS2_ALIGNED=%d%s%s%s%s -D kercn=%d%s%s%s -D convertFromU=%s", ocl::typeToStr(CV_MAKE_TYPE(depth, mcn)), ocl::typeToStr(depth), ocl::typeToStr(dtype), ocl::typeToStr(CV_MAKE_TYPE(ddepth, mcn)), ocl::typeToStr(ddepth), ddepth, cn, ocl::convertTypeStr(depth, ddepth, mcn, cvt[0]), opMap[sum_op], (int)wgs, wgs2_aligned, doubleSupport ? " -D DOUBLE_SUPPORT" : "", haveMask ? " -D HAVE_MASK" : "", _src.isContinuous() ? " -D HAVE_SRC_CONT" : "", haveMask && _mask.isContinuous() ? " -D HAVE_MASK_CONT" : "", kercn, haveSrc2 ? " -D HAVE_SRC2" : "", calc2 ? " -D OP_CALC2" : "", haveSrc2 && _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "", depth <= CV_32S && ddepth == CV_32S ? ocl::convertTypeStr(CV_8U, ddepth, convert_cn, cvt[1]) : "noconvert"); ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, opts); if (k.empty()) return false; UMat src = _src.getUMat(), src2 = _src2.getUMat(), db(1, dbsize, dtype), mask = _mask.getUMat(); ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), dbarg = ocl::KernelArg::PtrWriteOnly(db), maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), src2arg = ocl::KernelArg::ReadOnlyNoSize(src2); if (haveMask) { if (haveSrc2) k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg, src2arg); else k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg); } else { if (haveSrc2) k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, src2arg); else k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg); } size_t globalsize = ngroups * wgs; if (k.run(1, &globalsize, &wgs, false)) { typedef Scalar (*part_sum)(Mat m); part_sum funcs[3] = { ocl_part_sum, ocl_part_sum, ocl_part_sum }, func = funcs[ddepth - CV_32S]; Mat mres = db.getMat(ACCESS_READ); if (calc2) const_cast(res2) = func(mres.colRange(ngroups, dbsize)); res = func(mres.colRange(0, ngroups)); return true; } return false; } #endif #ifdef HAVE_IPP static bool ipp_sum(Mat &src, Scalar &_res) { CV_INSTRUMENT_REGION_IPP() #if IPP_VERSION_X100 >= 700 int cn = src.channels(); if (cn > 4) return false; size_t total_size = src.total(); int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; if( src.dims == 2 || (src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) ) { IppiSize sz = { cols, rows }; int type = src.type(); typedef IppStatus (CV_STDCALL* ippiSumFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm); typedef IppStatus (CV_STDCALL* ippiSumFuncNoHint)(const void*, int, IppiSize, double *); ippiSumFuncHint ippiSumHint = type == CV_32FC1 ? (ippiSumFuncHint)ippiSum_32f_C1R : type == CV_32FC3 ? (ippiSumFuncHint)ippiSum_32f_C3R : type == CV_32FC4 ? (ippiSumFuncHint)ippiSum_32f_C4R : 0; ippiSumFuncNoHint ippiSum = type == CV_8UC1 ? (ippiSumFuncNoHint)ippiSum_8u_C1R : type == CV_8UC3 ? (ippiSumFuncNoHint)ippiSum_8u_C3R : type == CV_8UC4 ? (ippiSumFuncNoHint)ippiSum_8u_C4R : type == CV_16UC1 ? (ippiSumFuncNoHint)ippiSum_16u_C1R : type == CV_16UC3 ? (ippiSumFuncNoHint)ippiSum_16u_C3R : type == CV_16UC4 ? (ippiSumFuncNoHint)ippiSum_16u_C4R : type == CV_16SC1 ? (ippiSumFuncNoHint)ippiSum_16s_C1R : type == CV_16SC3 ? (ippiSumFuncNoHint)ippiSum_16s_C3R : type == CV_16SC4 ? (ippiSumFuncNoHint)ippiSum_16s_C4R : 0; CV_Assert(!ippiSumHint || !ippiSum); if( ippiSumHint || ippiSum ) { Ipp64f res[4]; IppStatus ret = ippiSumHint ? CV_INSTRUMENT_FUN_IPP(ippiSumHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) : CV_INSTRUMENT_FUN_IPP(ippiSum, src.ptr(), (int)src.step[0], sz, res); if( ret >= 0 ) { for( int i = 0; i < cn; i++ ) _res[i] = res[i]; return true; } } } #else CV_UNUSED(src); CV_UNUSED(_res); #endif return false; } #endif } // cv:: cv::Scalar cv::sum( InputArray _src ) { CV_INSTRUMENT_REGION() #if defined HAVE_OPENCL || defined HAVE_IPP Scalar _res; #endif #ifdef HAVE_OPENCL CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, ocl_sum(_src, _res, OCL_OP_SUM), _res) #endif Mat src = _src.getMat(); CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_sum(src, _res), _res); int k, cn = src.channels(), depth = src.depth(); SumFunc func = getSumFunc(depth); CV_Assert( cn <= 4 && func != 0 ); const Mat* arrays[] = {&src, 0}; uchar* ptrs[1] = {}; NAryMatIterator it(arrays, ptrs); Scalar s; int total = (int)it.size, blockSize = total, intSumBlockSize = 0; int j, count = 0; AutoBuffer _buf; int* buf = (int*)&s[0]; size_t esz = 0; bool blockSum = depth < CV_32S; if( blockSum ) { intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); blockSize = std::min(blockSize, intSumBlockSize); _buf.allocate(cn); buf = _buf.data(); for( k = 0; k < cn; k++ ) buf[k] = 0; esz = src.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); func( ptrs[0], 0, (uchar*)buf, bsz, cn ); count += bsz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { for( k = 0; k < cn; k++ ) { s[k] += buf[k]; buf[k] = 0; } count = 0; } ptrs[0] += bsz*esz; } } return s; }