// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "precomp.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/core.hpp" #ifdef HAVE_OPENCV_DNN #include "opencv2/dnn.hpp" #endif #include namespace cv { #ifdef HAVE_OPENCV_DNN class FaceDetectorYNImpl : public FaceDetectorYN { public: FaceDetectorYNImpl(const String& model, const String& config, const Size& input_size, float score_threshold, float nms_threshold, int top_k, int backend_id, int target_id) { net = dnn::readNet(model, config); CV_Assert(!net.empty()); net.setPreferableBackend(backend_id); net.setPreferableTarget(target_id); inputW = input_size.width; inputH = input_size.height; scoreThreshold = score_threshold; nmsThreshold = nms_threshold; topK = top_k; generatePriors(); } void setInputSize(const Size& input_size) override { inputW = input_size.width; inputH = input_size.height; generatePriors(); } Size getInputSize() override { Size input_size; input_size.width = inputW; input_size.height = inputH; return input_size; } void setScoreThreshold(float score_threshold) override { scoreThreshold = score_threshold; } float getScoreThreshold() override { return scoreThreshold; } void setNMSThreshold(float nms_threshold) override { nmsThreshold = nms_threshold; } float getNMSThreshold() override { return nmsThreshold; } void setTopK(int top_k) override { topK = top_k; } int getTopK() override { return topK; } int detect(InputArray input_image, OutputArray faces) override { // TODO: more checkings should be done? if (input_image.empty()) { return 0; } CV_CheckEQ(input_image.size(), Size(inputW, inputH), "Size does not match. Call setInputSize(size) if input size does not match the preset size"); // Build blob from input image Mat input_blob = dnn::blobFromImage(input_image); // Forward std::vector output_names = { "loc", "conf", "iou" }; std::vector output_blobs; net.setInput(input_blob); net.forward(output_blobs, output_names); // Post process Mat results = postProcess(output_blobs); results.convertTo(faces, CV_32FC1); return 1; } private: void generatePriors() { // Calculate shapes of different scales according to the shape of input image Size feature_map_2nd = { int(int((inputW+1)/2)/2), int(int((inputH+1)/2)/2) }; Size feature_map_3rd = { int(feature_map_2nd.width/2), int(feature_map_2nd.height/2) }; Size feature_map_4th = { int(feature_map_3rd.width/2), int(feature_map_3rd.height/2) }; Size feature_map_5th = { int(feature_map_4th.width/2), int(feature_map_4th.height/2) }; Size feature_map_6th = { int(feature_map_5th.width/2), int(feature_map_5th.height/2) }; std::vector feature_map_sizes; feature_map_sizes.push_back(feature_map_3rd); feature_map_sizes.push_back(feature_map_4th); feature_map_sizes.push_back(feature_map_5th); feature_map_sizes.push_back(feature_map_6th); // Fixed params for generating priors const std::vector> min_sizes = { {10.0f, 16.0f, 24.0f}, {32.0f, 48.0f}, {64.0f, 96.0f}, {128.0f, 192.0f, 256.0f} }; CV_Assert(min_sizes.size() == feature_map_sizes.size()); // just to keep vectors in sync const std::vector steps = { 8, 16, 32, 64 }; // Generate priors priors.clear(); for (size_t i = 0; i < feature_map_sizes.size(); ++i) { Size feature_map_size = feature_map_sizes[i]; std::vector min_size = min_sizes[i]; for (int _h = 0; _h < feature_map_size.height; ++_h) { for (int _w = 0; _w < feature_map_size.width; ++_w) { for (size_t j = 0; j < min_size.size(); ++j) { float s_kx = min_size[j] / inputW; float s_ky = min_size[j] / inputH; float cx = (_w + 0.5f) * steps[i] / inputW; float cy = (_h + 0.5f) * steps[i] / inputH; Rect2f prior = { cx, cy, s_kx, s_ky }; priors.push_back(prior); } } } } } Mat postProcess(const std::vector& output_blobs) { // Extract from output_blobs Mat loc = output_blobs[0]; Mat conf = output_blobs[1]; Mat iou = output_blobs[2]; // Decode from deltas and priors const std::vector variance = {0.1f, 0.2f}; float* loc_v = (float*)(loc.data); float* conf_v = (float*)(conf.data); float* iou_v = (float*)(iou.data); Mat faces; // (tl_x, tl_y, w, h, re_x, re_y, le_x, le_y, nt_x, nt_y, rcm_x, rcm_y, lcm_x, lcm_y, score) // 'tl': top left point of the bounding box // 're': right eye, 'le': left eye // 'nt': nose tip // 'rcm': right corner of mouth, 'lcm': left corner of mouth Mat face(1, 15, CV_32FC1); for (size_t i = 0; i < priors.size(); ++i) { // Get score float clsScore = conf_v[i*2+1]; float iouScore = iou_v[i]; // Clamp if (iouScore < 0.f) { iouScore = 0.f; } else if (iouScore > 1.f) { iouScore = 1.f; } float score = std::sqrt(clsScore * iouScore); face.at(0, 14) = score; // Get bounding box float cx = (priors[i].x + loc_v[i*14+0] * variance[0] * priors[i].width) * inputW; float cy = (priors[i].y + loc_v[i*14+1] * variance[0] * priors[i].height) * inputH; float w = priors[i].width * exp(loc_v[i*14+2] * variance[0]) * inputW; float h = priors[i].height * exp(loc_v[i*14+3] * variance[1]) * inputH; float x1 = cx - w / 2; float y1 = cy - h / 2; face.at(0, 0) = x1; face.at(0, 1) = y1; face.at(0, 2) = w; face.at(0, 3) = h; // Get landmarks face.at(0, 4) = (priors[i].x + loc_v[i*14+ 4] * variance[0] * priors[i].width) * inputW; // right eye, x face.at(0, 5) = (priors[i].y + loc_v[i*14+ 5] * variance[0] * priors[i].height) * inputH; // right eye, y face.at(0, 6) = (priors[i].x + loc_v[i*14+ 6] * variance[0] * priors[i].width) * inputW; // left eye, x face.at(0, 7) = (priors[i].y + loc_v[i*14+ 7] * variance[0] * priors[i].height) * inputH; // left eye, y face.at(0, 8) = (priors[i].x + loc_v[i*14+ 8] * variance[0] * priors[i].width) * inputW; // nose tip, x face.at(0, 9) = (priors[i].y + loc_v[i*14+ 9] * variance[0] * priors[i].height) * inputH; // nose tip, y face.at(0, 10) = (priors[i].x + loc_v[i*14+10] * variance[0] * priors[i].width) * inputW; // right corner of mouth, x face.at(0, 11) = (priors[i].y + loc_v[i*14+11] * variance[0] * priors[i].height) * inputH; // right corner of mouth, y face.at(0, 12) = (priors[i].x + loc_v[i*14+12] * variance[0] * priors[i].width) * inputW; // left corner of mouth, x face.at(0, 13) = (priors[i].y + loc_v[i*14+13] * variance[0] * priors[i].height) * inputH; // left corner of mouth, y faces.push_back(face); } if (faces.rows > 1) { // Retrieve boxes and scores std::vector faceBoxes; std::vector faceScores; for (int rIdx = 0; rIdx < faces.rows; rIdx++) { faceBoxes.push_back(Rect2i(int(faces.at(rIdx, 0)), int(faces.at(rIdx, 1)), int(faces.at(rIdx, 2)), int(faces.at(rIdx, 3)))); faceScores.push_back(faces.at(rIdx, 14)); } std::vector keepIdx; dnn::NMSBoxes(faceBoxes, faceScores, scoreThreshold, nmsThreshold, keepIdx, 1.f, topK); // Get NMS results Mat nms_faces; for (int idx: keepIdx) { nms_faces.push_back(faces.row(idx)); } return nms_faces; } else { return faces; } } private: dnn::Net net; int inputW; int inputH; float scoreThreshold; float nmsThreshold; int topK; std::vector priors; }; #endif Ptr FaceDetectorYN::create(const String& model, const String& config, const Size& input_size, const float score_threshold, const float nms_threshold, const int top_k, const int backend_id, const int target_id) { #ifdef HAVE_OPENCV_DNN return makePtr(model, config, input_size, score_threshold, nms_threshold, top_k, backend_id, target_id); #else CV_UNUSED(model); CV_UNUSED(config); CV_UNUSED(input_size); CV_UNUSED(score_threshold); CV_UNUSED(nms_threshold); CV_UNUSED(top_k); CV_UNUSED(backend_id); CV_UNUSED(target_id); CV_Error(cv::Error::StsNotImplemented, "cv::FaceDetectorYN requires enabled 'dnn' module."); #endif } } // namespace cv