#include "clapack.h" /* Subroutine */ int dlazq3_(integer *i0, integer *n0, doublereal *z__, integer *pp, doublereal *dmin__, doublereal *sigma, doublereal *desig, doublereal *qmax, integer *nfail, integer *iter, integer *ndiv, logical *ieee, integer *ttype, doublereal *dmin1, doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2, doublereal *tau) { /* System generated locals */ integer i__1; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal g, s, t; integer j4, nn; doublereal eps, tol; integer n0in, ipn4; doublereal tol2, temp; extern /* Subroutine */ int dlasq5_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, logical *), dlasq6_( integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), dlazq4_(integer *, integer *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *); extern doublereal dlamch_(char *); doublereal safmin; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLAZQ3 checks for deflation, computes a shift (TAU) and calls dqds. */ /* In case of failure it changes shifts, and tries again until output */ /* is positive. */ /* Arguments */ /* ========= */ /* I0 (input) INTEGER */ /* First index. */ /* N0 (input) INTEGER */ /* Last index. */ /* Z (input) DOUBLE PRECISION array, dimension ( 4*N ) */ /* Z holds the qd array. */ /* PP (input) INTEGER */ /* PP=0 for ping, PP=1 for pong. */ /* DMIN (output) DOUBLE PRECISION */ /* Minimum value of d. */ /* SIGMA (output) DOUBLE PRECISION */ /* Sum of shifts used in current segment. */ /* DESIG (input/output) DOUBLE PRECISION */ /* Lower order part of SIGMA */ /* QMAX (input) DOUBLE PRECISION */ /* Maximum value of q. */ /* NFAIL (output) INTEGER */ /* Number of times shift was too big. */ /* ITER (output) INTEGER */ /* Number of iterations. */ /* NDIV (output) INTEGER */ /* Number of divisions. */ /* IEEE (input) LOGICAL */ /* Flag for IEEE or non IEEE arithmetic (passed to DLASQ5). */ /* TTYPE (input/output) INTEGER */ /* Shift type. TTYPE is passed as an argument in order to save */ /* its value between calls to DLAZQ3 */ /* DMIN1 (input/output) REAL */ /* DMIN2 (input/output) REAL */ /* DN (input/output) REAL */ /* DN1 (input/output) REAL */ /* DN2 (input/output) REAL */ /* TAU (input/output) REAL */ /* These are passed as arguments in order to save their values */ /* between calls to DLAZQ3 */ /* This is a thread safe version of DLASQ3, which passes TTYPE, DMIN1, */ /* DMIN2, DN, DN1. DN2 and TAU through the argument list in place of */ /* declaring them in a SAVE statment. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Function .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --z__; /* Function Body */ n0in = *n0; eps = dlamch_("Precision"); safmin = dlamch_("Safe minimum"); tol = eps * 100.; /* Computing 2nd power */ d__1 = tol; tol2 = d__1 * d__1; g = 0.; /* Check for deflation. */ L10: if (*n0 < *i0) { return 0; } if (*n0 == *i0) { goto L20; } nn = (*n0 << 2) + *pp; if (*n0 == *i0 + 1) { goto L40; } /* Check whether E(N0-1) is negligible, 1 eigenvalue. */ if (z__[nn - 5] > tol2 * (*sigma + z__[nn - 3]) && z__[nn - (*pp << 1) - 4] > tol2 * z__[nn - 7]) { goto L30; } L20: z__[(*n0 << 2) - 3] = z__[(*n0 << 2) + *pp - 3] + *sigma; --(*n0); goto L10; /* Check whether E(N0-2) is negligible, 2 eigenvalues. */ L30: if (z__[nn - 9] > tol2 * *sigma && z__[nn - (*pp << 1) - 8] > tol2 * z__[ nn - 11]) { goto L50; } L40: if (z__[nn - 3] > z__[nn - 7]) { s = z__[nn - 3]; z__[nn - 3] = z__[nn - 7]; z__[nn - 7] = s; } if (z__[nn - 5] > z__[nn - 3] * tol2) { t = (z__[nn - 7] - z__[nn - 3] + z__[nn - 5]) * .5; s = z__[nn - 3] * (z__[nn - 5] / t); if (s <= t) { s = z__[nn - 3] * (z__[nn - 5] / (t * (sqrt(s / t + 1.) + 1.))); } else { s = z__[nn - 3] * (z__[nn - 5] / (t + sqrt(t) * sqrt(t + s))); } t = z__[nn - 7] + (s + z__[nn - 5]); z__[nn - 3] *= z__[nn - 7] / t; z__[nn - 7] = t; } z__[(*n0 << 2) - 7] = z__[nn - 7] + *sigma; z__[(*n0 << 2) - 3] = z__[nn - 3] + *sigma; *n0 += -2; goto L10; L50: /* Reverse the qd-array, if warranted. */ if (*dmin__ <= 0. || *n0 < n0in) { if (z__[(*i0 << 2) + *pp - 3] * 1.5 < z__[(*n0 << 2) + *pp - 3]) { ipn4 = *i0 + *n0 << 2; i__1 = *i0 + *n0 - 1 << 1; for (j4 = *i0 << 2; j4 <= i__1; j4 += 4) { temp = z__[j4 - 3]; z__[j4 - 3] = z__[ipn4 - j4 - 3]; z__[ipn4 - j4 - 3] = temp; temp = z__[j4 - 2]; z__[j4 - 2] = z__[ipn4 - j4 - 2]; z__[ipn4 - j4 - 2] = temp; temp = z__[j4 - 1]; z__[j4 - 1] = z__[ipn4 - j4 - 5]; z__[ipn4 - j4 - 5] = temp; temp = z__[j4]; z__[j4] = z__[ipn4 - j4 - 4]; z__[ipn4 - j4 - 4] = temp; /* L60: */ } if (*n0 - *i0 <= 4) { z__[(*n0 << 2) + *pp - 1] = z__[(*i0 << 2) + *pp - 1]; z__[(*n0 << 2) - *pp] = z__[(*i0 << 2) - *pp]; } /* Computing MIN */ d__1 = *dmin2, d__2 = z__[(*n0 << 2) + *pp - 1]; *dmin2 = min(d__1,d__2); /* Computing MIN */ d__1 = z__[(*n0 << 2) + *pp - 1], d__2 = z__[(*i0 << 2) + *pp - 1] , d__1 = min(d__1,d__2), d__2 = z__[(*i0 << 2) + *pp + 3]; z__[(*n0 << 2) + *pp - 1] = min(d__1,d__2); /* Computing MIN */ d__1 = z__[(*n0 << 2) - *pp], d__2 = z__[(*i0 << 2) - *pp], d__1 = min(d__1,d__2), d__2 = z__[(*i0 << 2) - *pp + 4]; z__[(*n0 << 2) - *pp] = min(d__1,d__2); /* Computing MAX */ d__1 = *qmax, d__2 = z__[(*i0 << 2) + *pp - 3], d__1 = max(d__1, d__2), d__2 = z__[(*i0 << 2) + *pp + 1]; *qmax = max(d__1,d__2); *dmin__ = -0.; } } /* Computing MIN */ d__1 = z__[(*n0 << 2) + *pp - 1], d__2 = z__[(*n0 << 2) + *pp - 9], d__1 = min(d__1,d__2), d__2 = *dmin2 + z__[(*n0 << 2) - *pp]; if (*dmin__ < 0. || safmin * *qmax < min(d__1,d__2)) { /* Choose a shift. */ dlazq4_(i0, n0, &z__[1], pp, &n0in, dmin__, dmin1, dmin2, dn, dn1, dn2, tau, ttype, &g); /* Call dqds until DMIN > 0. */ L80: dlasq5_(i0, n0, &z__[1], pp, tau, dmin__, dmin1, dmin2, dn, dn1, dn2, ieee); *ndiv += *n0 - *i0 + 2; ++(*iter); /* Check status. */ if (*dmin__ >= 0. && *dmin1 > 0.) { /* Success. */ goto L100; } else if (*dmin__ < 0. && *dmin1 > 0. && z__[(*n0 - 1 << 2) - *pp] < tol * (*sigma + *dn1) && abs(*dn) < tol * *sigma) { /* Convergence hidden by negative DN. */ z__[(*n0 - 1 << 2) - *pp + 2] = 0.; *dmin__ = 0.; goto L100; } else if (*dmin__ < 0.) { /* TAU too big. Select new TAU and try again. */ ++(*nfail); if (*ttype < -22) { /* Failed twice. Play it safe. */ *tau = 0.; } else if (*dmin1 > 0.) { /* Late failure. Gives excellent shift. */ *tau = (*tau + *dmin__) * (1. - eps * 2.); *ttype += -11; } else { /* Early failure. Divide by 4. */ *tau *= .25; *ttype += -12; } goto L80; } else if (*dmin__ != *dmin__) { /* NaN. */ *tau = 0.; goto L80; } else { /* Possible underflow. Play it safe. */ goto L90; } } /* Risk of underflow. */ L90: dlasq6_(i0, n0, &z__[1], pp, dmin__, dmin1, dmin2, dn, dn1, dn2); *ndiv += *n0 - *i0 + 2; ++(*iter); *tau = 0.; L100: if (*tau < *sigma) { *desig += *tau; t = *sigma + *desig; *desig -= t - *sigma; } else { t = *sigma + *tau; *desig = *sigma - (t - *tau) + *desig; } *sigma = t; return 0; /* End of DLAZQ3 */ } /* dlazq3_ */