// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. /* Test for Tensorflow models loading */ #include "test_precomp.hpp" #include "npy_blob.hpp" #include #include namespace opencv_test { using namespace cv; using namespace cv::dnn; template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "/dnn/") + filename; } TEST(Test_TensorFlow, read_inception) { Net net; { const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); net = readNetFromTensorflow(model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); Mat input; resize(sample, input, Size(224, 224)); input -= 128; // mean sub Mat inputBlob = blobFromImage(input); net.setInput(inputBlob, "input"); Mat out = net.forward("softmax2"); std::cout << out.dims << std::endl; } TEST(Test_TensorFlow, inception_accuracy) { Net net; { const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); net = readNetFromTensorflow(model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); resize(sample, sample, Size(224, 224)); Mat inputBlob = blobFromImage(sample); net.setInput(inputBlob, "input"); Mat out = net.forward("softmax2"); Mat ref = blobFromNPY(_tf("tf_inception_prob.npy")); normAssert(ref, out); } static std::string path(const std::string& file) { return findDataFile("dnn/tensorflow/" + file, false); } static void runTensorFlowNet(const std::string& prefix, int targetId = DNN_TARGET_CPU, bool hasText = false, double l1 = 1e-5, double lInf = 1e-4, bool memoryLoad = false) { std::string netPath = path(prefix + "_net.pb"); std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : ""); std::string inpPath = path(prefix + "_in.npy"); std::string outPath = path(prefix + "_out.npy"); Net net; if (memoryLoad) { // Load files into a memory buffers string dataModel; ASSERT_TRUE(readFileInMemory(netPath, dataModel)); string dataConfig; if (hasText) ASSERT_TRUE(readFileInMemory(netConfig, dataConfig)); net = readNetFromTensorflow(dataModel.c_str(), dataModel.size(), dataConfig.c_str(), dataConfig.size()); } else net = readNetFromTensorflow(netPath, netConfig); ASSERT_FALSE(net.empty()); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(targetId); cv::Mat input = blobFromNPY(inpPath); cv::Mat target = blobFromNPY(outPath); net.setInput(input); cv::Mat output = net.forward(); normAssert(target, output, "", l1, lInf); } TEST(Test_TensorFlow, conv) { runTensorFlowNet("single_conv"); runTensorFlowNet("atrous_conv2d_valid"); runTensorFlowNet("atrous_conv2d_same"); runTensorFlowNet("depthwise_conv2d"); } TEST(Test_TensorFlow, padding) { runTensorFlowNet("padding_same"); runTensorFlowNet("padding_valid"); runTensorFlowNet("spatial_padding"); } TEST(Test_TensorFlow, eltwise_add_mul) { runTensorFlowNet("eltwise_add_mul"); } OCL_TEST(Test_TensorFlow, eltwise_add_mul) { runTensorFlowNet("eltwise_add_mul", DNN_TARGET_OPENCL); } TEST(Test_TensorFlow, pad_and_concat) { runTensorFlowNet("pad_and_concat"); } TEST(Test_TensorFlow, batch_norm) { runTensorFlowNet("batch_norm"); runTensorFlowNet("fused_batch_norm"); runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true); runTensorFlowNet("mvn_batch_norm"); runTensorFlowNet("mvn_batch_norm_1x1"); } OCL_TEST(Test_TensorFlow, batch_norm) { runTensorFlowNet("batch_norm", DNN_TARGET_OPENCL); runTensorFlowNet("fused_batch_norm", DNN_TARGET_OPENCL); runTensorFlowNet("batch_norm_text", DNN_TARGET_OPENCL, true); } TEST(Test_TensorFlow, pooling) { runTensorFlowNet("max_pool_even"); runTensorFlowNet("max_pool_odd_valid"); runTensorFlowNet("max_pool_odd_same"); runTensorFlowNet("ave_pool_same"); } TEST(Test_TensorFlow, deconvolution) { runTensorFlowNet("deconvolution"); runTensorFlowNet("deconvolution_same"); runTensorFlowNet("deconvolution_stride_2_same"); runTensorFlowNet("deconvolution_adj_pad_valid"); runTensorFlowNet("deconvolution_adj_pad_same"); } OCL_TEST(Test_TensorFlow, deconvolution) { runTensorFlowNet("deconvolution", DNN_TARGET_OPENCL); } TEST(Test_TensorFlow, matmul) { runTensorFlowNet("matmul"); runTensorFlowNet("nhwc_reshape_matmul"); runTensorFlowNet("nhwc_transpose_reshape_matmul"); } TEST(Test_TensorFlow, defun) { runTensorFlowNet("defun_dropout"); } TEST(Test_TensorFlow, reshape) { runTensorFlowNet("shift_reshape_no_reorder"); runTensorFlowNet("reshape_reduce"); runTensorFlowNet("flatten", DNN_TARGET_CPU, true); } TEST(Test_TensorFlow, fp16) { const float l1 = 1e-3; const float lInf = 1e-2; runTensorFlowNet("fp16_single_conv", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_deconvolution", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_max_pool_odd_same", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_padding_valid", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_eltwise_add_mul", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_max_pool_odd_valid", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_pad_and_concat", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_max_pool_even", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_padding_same", DNN_TARGET_CPU, false, l1, lInf); } TEST(Test_TensorFlow, quantized) { runTensorFlowNet("uint8_single_conv"); } TEST(Test_TensorFlow, MobileNet_SSD) { std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false); std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt", false); std::string imgPath = findDataFile("dnn/street.png", false); Mat inp; resize(imread(imgPath), inp, Size(300, 300)); inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true); std::vector outNames(3); outNames[0] = "concat"; outNames[1] = "concat_1"; outNames[2] = "detection_out"; std::vector target(outNames.size()); for (int i = 0; i < outNames.size(); ++i) { std::string path = findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco." + outNames[i] + ".npy", false); target[i] = blobFromNPY(path); } Net net = readNetFromTensorflow(netPath, netConfig); net.setInput(inp); std::vector output; net.forward(output, outNames); normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1)); normAssert(target[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4); normAssert(target[2].reshape(1, 1), output[2].reshape(1, 1), "", 4e-5, 1e-2); } TEST(Test_TensorFlow, Inception_v2_SSD) { std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false); std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false); Net net = readNetFromTensorflow(model, proto); Mat img = imread(findDataFile("dnn/street.png", false)); Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false); net.setInput(blob); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); out = out.reshape(1, out.total() / 7); Mat detections; for (int i = 0; i < out.rows; ++i) { if (out.at(i, 2) > 0.5) detections.push_back(out.row(i).colRange(1, 7)); } Mat ref = (Mat_(5, 6) << 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384); normAssert(detections, ref); } OCL_TEST(Test_TensorFlow, MobileNet_SSD) { std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false); std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt", false); std::string imgPath = findDataFile("dnn/street.png", false); Mat inp; resize(imread(imgPath), inp, Size(300, 300)); inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true); std::vector outNames(3); outNames[0] = "concat"; outNames[1] = "concat_1"; outNames[2] = "detection_out"; std::vector target(outNames.size()); for (int i = 0; i < outNames.size(); ++i) { std::string path = findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco." + outNames[i] + ".npy", false); target[i] = blobFromNPY(path); } Net net = readNetFromTensorflow(netPath, netConfig); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); net.setInput(inp); std::vector output; net.forward(output, outNames); normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1)); normAssert(target[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4); normAssert(target[2].reshape(1, 1), output[2].reshape(1, 1), "", 4e-5, 1e-2); } OCL_TEST(Test_TensorFlow, Inception_v2_SSD) { std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false); std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false); Net net = readNetFromTensorflow(model, proto); Mat img = imread(findDataFile("dnn/street.png", false)); Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); net.setInput(blob); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); out = out.reshape(1, out.total() / 7); Mat detections; for (int i = 0; i < out.rows; ++i) { if (out.at(i, 2) > 0.5) detections.push_back(out.row(i).colRange(1, 7)); } Mat ref = (Mat_(5, 6) << 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384); normAssert(detections, ref); } TEST(Test_TensorFlow, lstm) { runTensorFlowNet("lstm", DNN_TARGET_CPU, true); } TEST(Test_TensorFlow, split) { runTensorFlowNet("split_equals"); } TEST(Test_TensorFlow, resize_nearest_neighbor) { runTensorFlowNet("resize_nearest_neighbor"); } TEST(Test_TensorFlow, slice) { runTensorFlowNet("slice_4d"); } TEST(Test_TensorFlow, memory_read) { double l1 = 1e-5; double lInf = 1e-4; runTensorFlowNet("lstm", DNN_TARGET_CPU, true, l1, lInf, true); runTensorFlowNet("batch_norm", DNN_TARGET_CPU, false, l1, lInf, true); runTensorFlowNet("fused_batch_norm", DNN_TARGET_CPU, false, l1, lInf, true); runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true, l1, lInf, true); } }