/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" /**************************************************************************************\ * line samplers * \**************************************************************************************/ CV_IMPL int cvSampleLine( const void* img, CvPoint pt1, CvPoint pt2, void* _buffer, int connectivity ) { int count = -1; int i, coi = 0, pix_size; CvMat stub, *mat = cvGetMat( img, &stub, &coi ); CvLineIterator iterator; uchar* buffer = (uchar*)_buffer; if( coi != 0 ) CV_Error( CV_BadCOI, "" ); if( !buffer ) CV_Error( CV_StsNullPtr, "" ); count = cvInitLineIterator( mat, pt1, pt2, &iterator, connectivity ); pix_size = CV_ELEM_SIZE(mat->type); for( i = 0; i < count; i++ ) { for( int j = 0; j < pix_size; j++ ) buffer[j] = iterator.ptr[j]; buffer += pix_size; CV_NEXT_LINE_POINT( iterator ); } return count; } static const void* icvAdjustRect( const void* srcptr, int src_step, int pix_size, CvSize src_size, CvSize win_size, CvPoint ip, CvRect* pRect ) { CvRect rect; const char* src = (const char*)srcptr; if( ip.x >= 0 ) { src += ip.x*pix_size; rect.x = 0; } else { rect.x = -ip.x; if( rect.x > win_size.width ) rect.x = win_size.width; } if( ip.x + win_size.width < src_size.width ) rect.width = win_size.width; else { rect.width = src_size.width - ip.x - 1; if( rect.width < 0 ) { src += rect.width*pix_size; rect.width = 0; } assert( rect.width <= win_size.width ); } if( ip.y >= 0 ) { src += ip.y * src_step; rect.y = 0; } else rect.y = -ip.y; if( ip.y + win_size.height < src_size.height ) rect.height = win_size.height; else { rect.height = src_size.height - ip.y - 1; if( rect.height < 0 ) { src += rect.height*src_step; rect.height = 0; } } *pRect = rect; return src - rect.x*pix_size; } #define ICV_DEF_GET_RECT_SUB_PIX_FUNC( flavor, srctype, dsttype, worktype, \ cast_macro, scale_macro, cast_macro2 )\ CvStatus CV_STDCALL icvGetRectSubPix_##flavor##_C1R \ ( const srctype* src, int src_step, CvSize src_size, \ dsttype* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) \ { \ CvPoint ip; \ worktype a11, a12, a21, a22, b1, b2; \ float a, b; \ int i, j; \ \ center.x -= (win_size.width-1)*0.5f; \ center.y -= (win_size.height-1)*0.5f; \ \ ip.x = cvFloor( center.x ); \ ip.y = cvFloor( center.y ); \ \ a = center.x - ip.x; \ b = center.y - ip.y; \ a11 = scale_macro((1.f-a)*(1.f-b)); \ a12 = scale_macro(a*(1.f-b)); \ a21 = scale_macro((1.f-a)*b); \ a22 = scale_macro(a*b); \ b1 = scale_macro(1.f - b); \ b2 = scale_macro(b); \ \ src_step /= sizeof(src[0]); \ dst_step /= sizeof(dst[0]); \ \ if( 0 <= ip.x && ip.x + win_size.width < src_size.width && \ 0 <= ip.y && ip.y + win_size.height < src_size.height ) \ { \ /* extracted rectangle is totally inside the image */ \ src += ip.y * src_step + ip.x; \ \ for( i = 0; i < win_size.height; i++, src += src_step, \ dst += dst_step ) \ { \ for( j = 0; j <= win_size.width - 2; j += 2 ) \ { \ worktype s0 = cast_macro(src[j])*a11 + \ cast_macro(src[j+1])*a12 + \ cast_macro(src[j+src_step])*a21 + \ cast_macro(src[j+src_step+1])*a22; \ worktype s1 = cast_macro(src[j+1])*a11 + \ cast_macro(src[j+2])*a12 + \ cast_macro(src[j+src_step+1])*a21 + \ cast_macro(src[j+src_step+2])*a22; \ \ dst[j] = (dsttype)cast_macro2(s0); \ dst[j+1] = (dsttype)cast_macro2(s1); \ } \ \ for( ; j < win_size.width; j++ ) \ { \ worktype s0 = cast_macro(src[j])*a11 + \ cast_macro(src[j+1])*a12 + \ cast_macro(src[j+src_step])*a21 + \ cast_macro(src[j+src_step+1])*a22; \ \ dst[j] = (dsttype)cast_macro2(s0); \ } \ } \ } \ else \ { \ CvRect r; \ \ src = (const srctype*)icvAdjustRect( src, src_step*sizeof(*src), \ sizeof(*src), src_size, win_size,ip, &r); \ \ for( i = 0; i < win_size.height; i++, dst += dst_step ) \ { \ const srctype *src2 = src + src_step; \ \ if( i < r.y || i >= r.height ) \ src2 -= src_step; \ \ for( j = 0; j < r.x; j++ ) \ { \ worktype s0 = cast_macro(src[r.x])*b1 + \ cast_macro(src2[r.x])*b2; \ \ dst[j] = (dsttype)cast_macro2(s0); \ } \ \ for( ; j < r.width; j++ ) \ { \ worktype s0 = cast_macro(src[j])*a11 + \ cast_macro(src[j+1])*a12 + \ cast_macro(src2[j])*a21 + \ cast_macro(src2[j+1])*a22; \ \ dst[j] = (dsttype)cast_macro2(s0); \ } \ \ for( ; j < win_size.width; j++ ) \ { \ worktype s0 = cast_macro(src[r.width])*b1 + \ cast_macro(src2[r.width])*b2; \ \ dst[j] = (dsttype)cast_macro2(s0); \ } \ \ if( i < r.height ) \ src = src2; \ } \ } \ \ return CV_OK; \ } #define ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( flavor, srctype, dsttype, worktype, \ cast_macro, scale_macro, mul_macro )\ static CvStatus CV_STDCALL icvGetRectSubPix_##flavor##_C3R \ ( const srctype* src, int src_step, CvSize src_size, \ dsttype* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) \ { \ CvPoint ip; \ worktype a, b; \ int i, j; \ \ center.x -= (win_size.width-1)*0.5f; \ center.y -= (win_size.height-1)*0.5f; \ \ ip.x = cvFloor( center.x ); \ ip.y = cvFloor( center.y ); \ \ a = scale_macro( center.x - ip.x ); \ b = scale_macro( center.y - ip.y ); \ \ src_step /= sizeof( src[0] ); \ dst_step /= sizeof( dst[0] ); \ \ if( 0 <= ip.x && ip.x + win_size.width < src_size.width && \ 0 <= ip.y && ip.y + win_size.height < src_size.height ) \ { \ /* extracted rectangle is totally inside the image */ \ src += ip.y * src_step + ip.x*3; \ \ for( i = 0; i < win_size.height; i++, src += src_step, \ dst += dst_step ) \ { \ for( j = 0; j < win_size.width; j++ ) \ { \ worktype s0 = cast_macro(src[j*3]); \ worktype s1 = cast_macro(src[j*3 + src_step]); \ s0 += mul_macro( a, (cast_macro(src[j*3+3]) - s0)); \ s1 += mul_macro( a, (cast_macro(src[j*3+3+src_step]) - s1));\ dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ \ s0 = cast_macro(src[j*3+1]); \ s1 = cast_macro(src[j*3+1 + src_step]); \ s0 += mul_macro( a, (cast_macro(src[j*3+4]) - s0)); \ s1 += mul_macro( a, (cast_macro(src[j*3+4+src_step]) - s1));\ dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ \ s0 = cast_macro(src[j*3+2]); \ s1 = cast_macro(src[j*3+2 + src_step]); \ s0 += mul_macro( a, (cast_macro(src[j*3+5]) - s0)); \ s1 += mul_macro( a, (cast_macro(src[j*3+5+src_step]) - s1));\ dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ } \ } \ } \ else \ { \ CvRect r; \ \ src = (const srctype*)icvAdjustRect( src, src_step*sizeof(*src), \ sizeof(*src)*3, src_size, win_size, ip, &r ); \ \ for( i = 0; i < win_size.height; i++, dst += dst_step ) \ { \ const srctype *src2 = src + src_step; \ \ if( i < r.y || i >= r.height ) \ src2 -= src_step; \ \ for( j = 0; j < r.x; j++ ) \ { \ worktype s0 = cast_macro(src[r.x*3]); \ worktype s1 = cast_macro(src2[r.x*3]); \ dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ \ s0 = cast_macro(src[r.x*3+1]); \ s1 = cast_macro(src2[r.x*3+1]); \ dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ \ s0 = cast_macro(src[r.x*3+2]); \ s1 = cast_macro(src2[r.x*3+2]); \ dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ } \ \ for( ; j < r.width; j++ ) \ { \ worktype s0 = cast_macro(src[j*3]); \ worktype s1 = cast_macro(src2[j*3]); \ s0 += mul_macro( a, (cast_macro(src[j*3 + 3]) - s0)); \ s1 += mul_macro( a, (cast_macro(src2[j*3 + 3]) - s1)); \ dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ \ s0 = cast_macro(src[j*3+1]); \ s1 = cast_macro(src2[j*3+1]); \ s0 += mul_macro( a, (cast_macro(src[j*3 + 4]) - s0)); \ s1 += mul_macro( a, (cast_macro(src2[j*3 + 4]) - s1)); \ dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ \ s0 = cast_macro(src[j*3+2]); \ s1 = cast_macro(src2[j*3+2]); \ s0 += mul_macro( a, (cast_macro(src[j*3 + 5]) - s0)); \ s1 += mul_macro( a, (cast_macro(src2[j*3 + 5]) - s1)); \ dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ } \ \ for( ; j < win_size.width; j++ ) \ { \ worktype s0 = cast_macro(src[r.width*3]); \ worktype s1 = cast_macro(src2[r.width*3]); \ dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ \ s0 = cast_macro(src[r.width*3+1]); \ s1 = cast_macro(src2[r.width*3+1]); \ dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ \ s0 = cast_macro(src[r.width*3+2]); \ s1 = cast_macro(src2[r.width*3+2]); \ dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \ } \ \ if( i < r.height ) \ src = src2; \ } \ } \ \ return CV_OK; \ } CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R ( const uchar* src, int src_step, CvSize src_size, float* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) { CvPoint ip; float a12, a22, b1, b2; float a, b; double s = 0; int i, j; center.x -= (win_size.width-1)*0.5f; center.y -= (win_size.height-1)*0.5f; ip.x = cvFloor( center.x ); ip.y = cvFloor( center.y ); if( win_size.width <= 0 || win_size.height <= 0 ) return CV_BADRANGE_ERR; a = center.x - ip.x; b = center.y - ip.y; a = MAX(a,0.0001f); a12 = a*(1.f-b); a22 = a*b; b1 = 1.f - b; b2 = b; s = (1. - a)/a; src_step /= sizeof(src[0]); dst_step /= sizeof(dst[0]); if( 0 <= ip.x && ip.x + win_size.width < src_size.width && 0 <= ip.y && ip.y + win_size.height < src_size.height ) { // extracted rectangle is totally inside the image src += ip.y * src_step + ip.x; #if 0 if( icvCopySubpix_8u32f_C1R_p && icvCopySubpix_8u32f_C1R_p( src, src_step, dst, dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 ) return CV_OK; #endif for( ; win_size.height--; src += src_step, dst += dst_step ) { float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step])); for( j = 0; j < win_size.width; j++ ) { float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]); dst[j] = prev + t; prev = (float)(t*s); } } } else { CvRect r; src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src), sizeof(*src), src_size, win_size,ip, &r); for( i = 0; i < win_size.height; i++, dst += dst_step ) { const uchar *src2 = src + src_step; if( i < r.y || i >= r.height ) src2 -= src_step; for( j = 0; j < r.x; j++ ) { float s0 = CV_8TO32F(src[r.x])*b1 + CV_8TO32F(src2[r.x])*b2; dst[j] = (float)(s0); } if( j < r.width ) { float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j])); for( ; j < r.width; j++ ) { float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]); dst[j] = prev + t; prev = (float)(t*s); } } for( ; j < win_size.width; j++ ) { float s0 = CV_8TO32F(src[r.width])*b1 + CV_8TO32F(src2[r.width])*b2; dst[j] = (float)(s0); } if( i < r.height ) src = src2; } } return CV_OK; } #define ICV_SHIFT 16 #define ICV_SCALE(x) cvRound((x)*(1 << ICV_SHIFT)) #define ICV_MUL_SCALE(x,y) (((x)*(y) + (1 << (ICV_SHIFT-1))) >> ICV_SHIFT) #define ICV_DESCALE(x) (((x)+(1 << (ICV_SHIFT-1))) >> ICV_SHIFT) /*icvCopySubpix_8u_C1R_t icvCopySubpix_8u_C1R_p = 0; icvCopySubpix_8u32f_C1R_t icvCopySubpix_8u32f_C1R_p = 0; icvCopySubpix_32f_C1R_t icvCopySubpix_32f_C1R_p = 0;*/ ICV_DEF_GET_RECT_SUB_PIX_FUNC( 8u, uchar, uchar, int, CV_NOP, ICV_SCALE, ICV_DESCALE ) //ICV_DEF_GET_RECT_SUB_PIX_FUNC( 8u32f, uchar, float, float, CV_8TO32F, CV_NOP, CV_NOP ) ICV_DEF_GET_RECT_SUB_PIX_FUNC( 32f, float, float, float, CV_NOP, CV_NOP, CV_NOP ) ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 8u, uchar, uchar, int, CV_NOP, ICV_SCALE, ICV_MUL_SCALE ) ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 8u32f, uchar, float, float, CV_8TO32F, CV_NOP, CV_MUL ) ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 32f, float, float, float, CV_NOP, CV_NOP, CV_MUL ) #define ICV_DEF_INIT_SUBPIX_TAB( FUNCNAME, FLAG ) \ static void icvInit##FUNCNAME##FLAG##Table( CvFuncTable* tab ) \ { \ tab->fn_2d[CV_8U] = (void*)icv##FUNCNAME##_8u_##FLAG; \ tab->fn_2d[CV_32F] = (void*)icv##FUNCNAME##_32f_##FLAG; \ \ tab->fn_2d[1] = (void*)icv##FUNCNAME##_8u32f_##FLAG; \ } ICV_DEF_INIT_SUBPIX_TAB( GetRectSubPix, C1R ) ICV_DEF_INIT_SUBPIX_TAB( GetRectSubPix, C3R ) typedef CvStatus (CV_STDCALL *CvGetRectSubPixFunc)( const void* src, int src_step, CvSize src_size, void* dst, int dst_step, CvSize win_size, CvPoint2D32f center ); CV_IMPL void cvGetRectSubPix( const void* srcarr, void* dstarr, CvPoint2D32f center ) { static CvFuncTable gr_tab[2]; static int inittab = 0; CvMat srcstub, *src = (CvMat*)srcarr; CvMat dststub, *dst = (CvMat*)dstarr; CvSize src_size, dst_size; CvGetRectSubPixFunc func; int cn, src_step, dst_step; if( !inittab ) { icvInitGetRectSubPixC1RTable( gr_tab + 0 ); icvInitGetRectSubPixC3RTable( gr_tab + 1 ); inittab = 1; } if( !CV_IS_MAT(src)) src = cvGetMat( src, &srcstub ); if( !CV_IS_MAT(dst)) dst = cvGetMat( dst, &dststub ); cn = CV_MAT_CN( src->type ); if( (cn != 1 && cn != 3) || !CV_ARE_CNS_EQ( src, dst )) CV_Error( CV_StsUnsupportedFormat, "" ); src_size = cvGetMatSize( src ); dst_size = cvGetMatSize( dst ); src_step = src->step ? src->step : CV_STUB_STEP; dst_step = dst->step ? dst->step : CV_STUB_STEP; //if( dst_size.width > src_size.width || dst_size.height > src_size.height ) // CV_ERROR( CV_StsBadSize, "destination ROI must be smaller than source ROI" ); if( CV_ARE_DEPTHS_EQ( src, dst )) { func = (CvGetRectSubPixFunc)(gr_tab[cn != 1].fn_2d[CV_MAT_DEPTH(src->type)]); } else { if( CV_MAT_DEPTH( src->type ) != CV_8U || CV_MAT_DEPTH( dst->type ) != CV_32F ) CV_Error( CV_StsUnsupportedFormat, "" ); func = (CvGetRectSubPixFunc)(gr_tab[cn != 1].fn_2d[1]); } if( !func ) CV_Error( CV_StsUnsupportedFormat, "" ); IPPI_CALL( func( src->data.ptr, src_step, src_size, dst->data.ptr, dst_step, dst_size, center )); } #define ICV_32F8U(x) ((uchar)cvRound(x)) #define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype, \ worktype, cast_macro, cvt ) \ CvStatus CV_STDCALL \ icvGetQuadrangleSubPix_##flavor##_C1R \ ( const srctype * src, int src_step, CvSize src_size, \ dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \ { \ int x, y; \ double dx = (win_size.width - 1)*0.5; \ double dy = (win_size.height - 1)*0.5; \ double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \ double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \ \ src_step /= sizeof(srctype); \ dst_step /= sizeof(dsttype); \ \ for( y = 0; y < win_size.height; y++, dst += dst_step ) \ { \ double xs = A12*y + A13; \ double ys = A22*y + A23; \ double xe = A11*(win_size.width-1) + A12*y + A13; \ double ye = A21*(win_size.width-1) + A22*y + A23; \ \ if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \ (unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \ (unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \ (unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \ { \ for( x = 0; x < win_size.width; x++ ) \ { \ int ixs = cvFloor( xs ); \ int iys = cvFloor( ys ); \ const srctype *ptr = src + src_step*iys + ixs; \ double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \ worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a; \ worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a;\ xs += A11; \ ys += A21; \ \ dst[x] = cast_macro(p0 + b * (p1 - p0)); \ } \ } \ else \ { \ for( x = 0; x < win_size.width; x++ ) \ { \ int ixs = cvFloor( xs ), iys = cvFloor( ys ); \ double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \ const srctype *ptr0, *ptr1; \ worktype p0, p1; \ xs += A11; ys += A21; \ \ if( (unsigned)iys < (unsigned)(src_size.height-1) ) \ ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \ else \ ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \ \ if( (unsigned)ixs < (unsigned)(src_size.width-1) ) \ { \ p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a; \ p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a; \ } \ else \ { \ ixs = ixs < 0 ? 0 : src_size.width - 1; \ p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]); \ } \ dst[x] = cast_macro(p0 + b * (p1 - p0)); \ } \ } \ } \ \ return CV_OK; \ } #define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( flavor, srctype, dsttype, \ worktype, cast_macro, cvt ) \ static CvStatus CV_STDCALL \ icvGetQuadrangleSubPix_##flavor##_C3R \ ( const srctype * src, int src_step, CvSize src_size, \ dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \ { \ int x, y; \ double dx = (win_size.width - 1)*0.5; \ double dy = (win_size.height - 1)*0.5; \ double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \ double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \ \ src_step /= sizeof(srctype); \ dst_step /= sizeof(dsttype); \ \ for( y = 0; y < win_size.height; y++, dst += dst_step ) \ { \ double xs = A12*y + A13; \ double ys = A22*y + A23; \ double xe = A11*(win_size.width-1) + A12*y + A13; \ double ye = A21*(win_size.width-1) + A22*y + A23; \ \ if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \ (unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \ (unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \ (unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \ { \ for( x = 0; x < win_size.width; x++ ) \ { \ int ixs = cvFloor( xs ); \ int iys = cvFloor( ys ); \ const srctype *ptr = src + src_step*iys + ixs*3; \ double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \ worktype p0, p1; \ xs += A11; \ ys += A21; \ \ p0 = cvt(ptr[0])*a1 + cvt(ptr[3])*a; \ p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+3])*a; \ dst[x*3] = cast_macro(p0 + b * (p1 - p0)); \ \ p0 = cvt(ptr[1])*a1 + cvt(ptr[4])*a; \ p1 = cvt(ptr[src_step+1])*a1 + cvt(ptr[src_step+4])*a; \ dst[x*3+1] = cast_macro(p0 + b * (p1 - p0)); \ \ p0 = cvt(ptr[2])*a1 + cvt(ptr[5])*a; \ p1 = cvt(ptr[src_step+2])*a1 + cvt(ptr[src_step+5])*a; \ dst[x*3+2] = cast_macro(p0 + b * (p1 - p0)); \ } \ } \ else \ { \ for( x = 0; x < win_size.width; x++ ) \ { \ int ixs = cvFloor(xs), iys = cvFloor(ys); \ double a = xs - ixs, b = ys - iys; \ const srctype *ptr0, *ptr1; \ xs += A11; ys += A21; \ \ if( (unsigned)iys < (unsigned)(src_size.height-1) ) \ ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \ else \ ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \ \ if( (unsigned)ixs < (unsigned)(src_size.width - 1) ) \ { \ double a1 = 1.f - a; \ worktype p0, p1; \ ptr0 += ixs*3; ptr1 += ixs*3; \ p0 = cvt(ptr0[0])*a1 + cvt(ptr0[3])*a; \ p1 = cvt(ptr1[0])*a1 + cvt(ptr1[3])*a; \ dst[x*3] = cast_macro(p0 + b * (p1 - p0)); \ \ p0 = cvt(ptr0[1])*a1 + cvt(ptr0[4])*a; \ p1 = cvt(ptr1[1])*a1 + cvt(ptr1[4])*a; \ dst[x*3+1] = cast_macro(p0 + b * (p1 - p0)); \ \ p0 = cvt(ptr0[2])*a1 + cvt(ptr0[5])*a; \ p1 = cvt(ptr1[2])*a1 + cvt(ptr1[5])*a; \ dst[x*3+2] = cast_macro(p0 + b * (p1 - p0)); \ } \ else \ { \ double b1 = 1.f - b; \ ixs = ixs < 0 ? 0 : src_size.width - 1; \ ptr0 += ixs*3; ptr1 += ixs*3; \ \ dst[x*3] = cast_macro(cvt(ptr0[0])*b1 + cvt(ptr1[0])*b);\ dst[x*3+1]=cast_macro(cvt(ptr0[1])*b1 + cvt(ptr1[1])*b);\ dst[x*3+2]=cast_macro(cvt(ptr0[2])*b1 + cvt(ptr1[2])*b);\ } \ } \ } \ } \ \ return CV_OK; \ } /*#define srctype uchar #define dsttype uchar #define worktype float #define cvt CV_8TO32F #define cast_macro ICV_32F8U #undef srctype #undef dsttype #undef worktype #undef cvt #undef cast_macro*/ ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u, uchar, uchar, double, ICV_32F8U, CV_8TO32F ) ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 32f, float, float, double, CV_CAST_32F, CV_NOP ) ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F ) ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 8u, uchar, uchar, double, ICV_32F8U, CV_8TO32F ) ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 32f, float, float, double, CV_CAST_32F, CV_NOP ) ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F ) ICV_DEF_INIT_SUBPIX_TAB( GetQuadrangleSubPix, C1R ) ICV_DEF_INIT_SUBPIX_TAB( GetQuadrangleSubPix, C3R ) typedef CvStatus (CV_STDCALL *CvGetQuadrangleSubPixFunc)( const void* src, int src_step, CvSize src_size, void* dst, int dst_step, CvSize win_size, const float* matrix ); CV_IMPL void cvGetQuadrangleSubPix( const void* srcarr, void* dstarr, const CvMat* mat ) { static CvFuncTable gq_tab[2]; static int inittab = 0; CvMat srcstub, *src = (CvMat*)srcarr; CvMat dststub, *dst = (CvMat*)dstarr; CvSize src_size, dst_size; CvGetQuadrangleSubPixFunc func; float m[6]; int k, cn; if( !inittab ) { icvInitGetQuadrangleSubPixC1RTable( gq_tab + 0 ); icvInitGetQuadrangleSubPixC3RTable( gq_tab + 1 ); inittab = 1; } if( !CV_IS_MAT(src)) src = cvGetMat( src, &srcstub ); if( !CV_IS_MAT(dst)) dst = cvGetMat( dst, &dststub ); if( !CV_IS_MAT(mat)) CV_Error( CV_StsBadArg, "map matrix is not valid" ); cn = CV_MAT_CN( src->type ); if( (cn != 1 && cn != 3) || !CV_ARE_CNS_EQ( src, dst )) CV_Error( CV_StsUnsupportedFormat, "" ); src_size = cvGetMatSize( src ); dst_size = cvGetMatSize( dst ); /*if( dst_size.width > src_size.width || dst_size.height > src_size.height ) CV_ERROR( CV_StsBadSize, "destination ROI must not be larger than source ROI" );*/ if( mat->rows != 2 || mat->cols != 3 ) CV_Error( CV_StsBadArg, "Transformation matrix must be 2x3" ); if( CV_MAT_TYPE( mat->type ) == CV_32FC1 ) { for( k = 0; k < 3; k++ ) { m[k] = mat->data.fl[k]; m[3 + k] = ((float*)(mat->data.ptr + mat->step))[k]; } } else if( CV_MAT_TYPE( mat->type ) == CV_64FC1 ) { for( k = 0; k < 3; k++ ) { m[k] = (float)mat->data.db[k]; m[3 + k] = (float)((double*)(mat->data.ptr + mat->step))[k]; } } else CV_Error( CV_StsUnsupportedFormat, "The transformation matrix should have 32fC1 or 64fC1 type" ); if( CV_ARE_DEPTHS_EQ( src, dst )) { func = (CvGetQuadrangleSubPixFunc)(gq_tab[cn != 1].fn_2d[CV_MAT_DEPTH(src->type)]); } else { if( CV_MAT_DEPTH( src->type ) != CV_8U || CV_MAT_DEPTH( dst->type ) != CV_32F ) CV_Error( CV_StsUnsupportedFormat, "" ); func = (CvGetQuadrangleSubPixFunc)(gq_tab[cn != 1].fn_2d[1]); } if( !func ) CV_Error( CV_StsUnsupportedFormat, "" ); IPPI_CALL( func( src->data.ptr, src->step, src_size, dst->data.ptr, dst->step, dst_size, m )); } void cv::getRectSubPix( InputArray _image, Size patchSize, Point2f center, OutputArray _patch, int patchType ) { Mat image = _image.getMat(); _patch.create(patchSize, patchType < 0 ? image.type() : CV_MAKETYPE(CV_MAT_DEPTH(patchType),image.channels())); Mat patch = _patch.getMat(); CvMat _cimage = image, _cpatch = patch; cvGetRectSubPix(&_cimage, &_cpatch, center); } /* End of file. */