// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #ifndef OPENCV_DNN_SRC_CUDA_FUNCTORS_HPP #define OPENCV_DNN_SRC_CUDA_FUNCTORS_HPP #include #include "math.hpp" #include "../cuda4dnn/csl/nvcc_defs.hpp" namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { template struct IdentityFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE IdentityFunctor() { } CUDA4DNN_DEVICE IdentityFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T value) { return value; }; }; template struct ReLUFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() : slope(0) { } CUDA4DNN_HOST_DEVICE Params(T slope_) : slope(slope_) { } T slope; }; CUDA4DNN_DEVICE ReLUFunctor() : ReLUFunctor(Params{}) { } CUDA4DNN_DEVICE ReLUFunctor(const Params& params) : slope(params.slope) { } CUDA4DNN_DEVICE T operator()(T value) { using csl::device::log1pexp; return value >= T(0) ? value : slope * value; } T slope; }; template struct ClippedReLUFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() : floor(0), ceiling(6) { } CUDA4DNN_HOST_DEVICE Params(T floor_, T ceiling_) : floor(floor_), ceiling(ceiling_) { } T floor, ceiling; }; CUDA4DNN_DEVICE ClippedReLUFunctor() : ClippedReLUFunctor(Params{}) { } CUDA4DNN_DEVICE ClippedReLUFunctor(const Params& params) : floor{params.floor}, ceiling{params.ceiling} { } CUDA4DNN_DEVICE T operator()(T value) { using csl::device::clamp; return clamp(value, floor, ceiling); } T floor, ceiling; }; template struct TanHFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE TanHFunctor() { } CUDA4DNN_DEVICE TanHFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T value) { using csl::device::tanh; return tanh(value); } }; template struct SwishFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE SwishFunctor() { } CUDA4DNN_DEVICE SwishFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T value) { // f(x) = x * sigmoid(x) using csl::device::fast_divide; using csl::device::fast_exp; return fast_divide(value, static_cast(1) + fast_exp(-value)); } }; template struct MishFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE MishFunctor() { } CUDA4DNN_DEVICE MishFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T value) { using csl::device::tanh; using csl::device::log1pexp; return value * tanh(log1pexp(value)); } }; template <> struct MishFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE MishFunctor() { } CUDA4DNN_DEVICE MishFunctor(const Params& params) { } CUDA4DNN_DEVICE float operator()(float value) { // f(x) = x * tanh(log1pexp(x)); using csl::device::fast_divide; using csl::device::fast_exp; auto e = fast_exp(value); auto n = e * e + 2 * e; if (value <= -0.6f) return value * fast_divide(n, n + 2); return value - 2 * fast_divide(value, n + 2); } }; #if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) template <> struct MishFunctor<__half> { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE MishFunctor() { } CUDA4DNN_DEVICE MishFunctor(const Params& params) { } CUDA4DNN_DEVICE __half operator()(__half value) { return MishFunctor()(value); } }; #endif template struct SigmoidFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE SigmoidFunctor() { } CUDA4DNN_DEVICE SigmoidFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T value) { using csl::device::fast_sigmoid; return fast_sigmoid(value); } }; template struct ELUFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE ELUFunctor() { } CUDA4DNN_DEVICE ELUFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T value) { using csl::device::expm1; return value >= T(0) ? value : expm1(value); } }; template struct AbsFunctor { struct Params { }; CUDA4DNN_DEVICE AbsFunctor() { } CUDA4DNN_DEVICE AbsFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T value) { using csl::device::abs; return abs(value); } }; template struct BNLLFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE BNLLFunctor() { } CUDA4DNN_DEVICE BNLLFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T value) { using csl::device::log1pexp; return value > T(0) ? value + log1pexp(-value) : log1pexp(value); } }; template struct PowerFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() : exp(1), scale(1), shift(0) { } CUDA4DNN_HOST_DEVICE Params(T exp_, T scale_, T shift_) : exp(exp_), scale(scale_), shift(shift_) { } T exp, scale, shift; }; CUDA4DNN_DEVICE PowerFunctor() : PowerFunctor(Params{}) { } CUDA4DNN_DEVICE PowerFunctor(const Params& params) : exp{params.exp}, scale{params.scale}, shift{params.shift} { } CUDA4DNN_DEVICE T operator()(T value) { using csl::device::pow; return pow(shift + scale * value, exp); } T exp, scale, shift; }; template struct MaxFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE MaxFunctor() { } CUDA4DNN_DEVICE MaxFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T x, T y) { using csl::device::max; return max(x, y); } }; template struct SumFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE SumFunctor() { } CUDA4DNN_DEVICE SumFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T x, T y) { return x + y; } }; template struct ScaledSumFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() : scale_x(1), scale_y(1) { } CUDA4DNN_HOST_DEVICE Params(T scale_x_, T scale_y_) : scale_x(scale_x_), scale_y(scale_y_) { } T scale_x, scale_y; }; CUDA4DNN_DEVICE ScaledSumFunctor() : scale_x(1), scale_y(1) { } CUDA4DNN_DEVICE ScaledSumFunctor(const Params& params) : scale_x{params.scale_x}, scale_y{params.scale_y} { } CUDA4DNN_DEVICE T operator()(T x, T y) { return scale_x * x + scale_y * y; } T scale_x, scale_y; }; template struct ProductFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE ProductFunctor() { } CUDA4DNN_DEVICE ProductFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T x, T y) { return x * y; } }; template struct DivFunctor { struct Params { CUDA4DNN_HOST_DEVICE Params() { } }; CUDA4DNN_DEVICE DivFunctor() { } CUDA4DNN_DEVICE DivFunctor(const Params& params) { } CUDA4DNN_DEVICE T operator()(T x, T y) { return x / y; } }; }}}} /* namespace cv::dnn::cuda4dnn::kernels */ #endif /* OPENCV_DNN_SRC_CUDA_FUNCTORS_HPP */