#include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; static doublereal c_b21 = -1.; static doublereal c_b22 = 1.; /* Subroutine */ int dgebrd_(integer *m, integer *n, doublereal *a, integer * lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal * taup, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ integer i__, j, nb, nx; doublereal ws; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer nbmin, iinfo, minmn; extern /* Subroutine */ int dgebd2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), dlabrd_(integer *, integer *, integer * , doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *) , xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer ldwrkx, ldwrky, lwkopt; logical lquery; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGEBRD reduces a general real M-by-N matrix A to upper or lower */ /* bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */ /* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows in the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns in the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the M-by-N general matrix to be reduced. */ /* On exit, */ /* if m >= n, the diagonal and the first superdiagonal are */ /* overwritten with the upper bidiagonal matrix B; the */ /* elements below the diagonal, with the array TAUQ, represent */ /* the orthogonal matrix Q as a product of elementary */ /* reflectors, and the elements above the first superdiagonal, */ /* with the array TAUP, represent the orthogonal matrix P as */ /* a product of elementary reflectors; */ /* if m < n, the diagonal and the first subdiagonal are */ /* overwritten with the lower bidiagonal matrix B; the */ /* elements below the first subdiagonal, with the array TAUQ, */ /* represent the orthogonal matrix Q as a product of */ /* elementary reflectors, and the elements above the diagonal, */ /* with the array TAUP, represent the orthogonal matrix P as */ /* a product of elementary reflectors. */ /* See Further Details. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* D (output) DOUBLE PRECISION array, dimension (min(M,N)) */ /* The diagonal elements of the bidiagonal matrix B: */ /* D(i) = A(i,i). */ /* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) */ /* The off-diagonal elements of the bidiagonal matrix B: */ /* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */ /* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */ /* TAUQ (output) DOUBLE PRECISION array dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the orthogonal matrix Q. See Further Details. */ /* TAUP (output) DOUBLE PRECISION array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the orthogonal matrix P. See Further Details. */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= max(1,M,N). */ /* For optimum performance LWORK >= (M+N)*NB, where NB */ /* is the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* The matrices Q and P are represented as products of elementary */ /* reflectors: */ /* If m >= n, */ /* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */ /* Each H(i) and G(i) has the form: */ /* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */ /* where tauq and taup are real scalars, and v and u are real vectors; */ /* v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */ /* u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */ /* tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* If m < n, */ /* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */ /* Each H(i) and G(i) has the form: */ /* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */ /* where tauq and taup are real scalars, and v and u are real vectors; */ /* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */ /* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */ /* tauq is stored in TAUQ(i) and taup in TAUP(i). */ /* The contents of A on exit are illustrated by the following examples: */ /* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */ /* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */ /* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */ /* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */ /* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */ /* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */ /* ( v1 v2 v3 v4 v5 ) */ /* where d and e denote diagonal and off-diagonal elements of B, vi */ /* denotes an element of the vector defining H(i), and ui an element of */ /* the vector defining G(i). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tauq; --taup; --work; /* Function Body */ *info = 0; /* Computing MAX */ i__1 = 1, i__2 = ilaenv_(&c__1, "DGEBRD", " ", m, n, &c_n1, &c_n1); nb = max(i__1,i__2); lwkopt = (*m + *n) * nb; work[1] = (doublereal) lwkopt; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*m); if (*lwork < max(i__1,*n) && ! lquery) { *info = -10; } } if (*info < 0) { i__1 = -(*info); xerbla_("DGEBRD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ minmn = min(*m,*n); if (minmn == 0) { work[1] = 1.; return 0; } ws = (doublereal) max(*m,*n); ldwrkx = *m; ldwrky = *n; if (nb > 1 && nb < minmn) { /* Set the crossover point NX. */ /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__3, "DGEBRD", " ", m, n, &c_n1, &c_n1); nx = max(i__1,i__2); /* Determine when to switch from blocked to unblocked code. */ if (nx < minmn) { ws = (doublereal) ((*m + *n) * nb); if ((doublereal) (*lwork) < ws) { /* Not enough work space for the optimal NB, consider using */ /* a smaller block size. */ nbmin = ilaenv_(&c__2, "DGEBRD", " ", m, n, &c_n1, &c_n1); if (*lwork >= (*m + *n) * nbmin) { nb = *lwork / (*m + *n); } else { nb = 1; nx = minmn; } } } } else { nx = minmn; } i__1 = minmn - nx; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Reduce rows and columns i:i+nb-1 to bidiagonal form and return */ /* the matrices X and Y which are needed to update the unreduced */ /* part of the matrix */ i__3 = *m - i__ + 1; i__4 = *n - i__ + 1; dlabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[ i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx * nb + 1], &ldwrky); /* Update the trailing submatrix A(i+nb:m,i+nb:n), using an update */ /* of the form A := A - V*Y' - X*U' */ i__3 = *m - i__ - nb + 1; i__4 = *n - i__ - nb + 1; dgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b21, &a[i__ + nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], & ldwrky, &c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda); i__3 = *m - i__ - nb + 1; i__4 = *n - i__ - nb + 1; dgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b21, & work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, & c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda); /* Copy diagonal and off-diagonal elements of B back into A */ if (*m >= *n) { i__3 = i__ + nb - 1; for (j = i__; j <= i__3; ++j) { a[j + j * a_dim1] = d__[j]; a[j + (j + 1) * a_dim1] = e[j]; /* L10: */ } } else { i__3 = i__ + nb - 1; for (j = i__; j <= i__3; ++j) { a[j + j * a_dim1] = d__[j]; a[j + 1 + j * a_dim1] = e[j]; /* L20: */ } } /* L30: */ } /* Use unblocked code to reduce the remainder of the matrix */ i__2 = *m - i__ + 1; i__1 = *n - i__ + 1; dgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], & tauq[i__], &taup[i__], &work[1], &iinfo); work[1] = ws; return 0; /* End of DGEBRD */ } /* dgebrd_ */