#include "clapack.h" /* Subroutine */ int dlaed5_(integer *i__, doublereal *d__, doublereal *z__, doublereal *delta, doublereal *rho, doublereal *dlam) { /* System generated locals */ doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal b, c__, w, del, tau, temp; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This subroutine computes the I-th eigenvalue of a symmetric rank-one */ /* modification of a 2-by-2 diagonal matrix */ /* diag( D ) + RHO * Z * transpose(Z) . */ /* The diagonal elements in the array D are assumed to satisfy */ /* D(i) < D(j) for i < j . */ /* We also assume RHO > 0 and that the Euclidean norm of the vector */ /* Z is one. */ /* Arguments */ /* ========= */ /* I (input) INTEGER */ /* The index of the eigenvalue to be computed. I = 1 or I = 2. */ /* D (input) DOUBLE PRECISION array, dimension (2) */ /* The original eigenvalues. We assume D(1) < D(2). */ /* Z (input) DOUBLE PRECISION array, dimension (2) */ /* The components of the updating vector. */ /* DELTA (output) DOUBLE PRECISION array, dimension (2) */ /* The vector DELTA contains the information necessary */ /* to construct the eigenvectors. */ /* RHO (input) DOUBLE PRECISION */ /* The scalar in the symmetric updating formula. */ /* DLAM (output) DOUBLE PRECISION */ /* The computed lambda_I, the I-th updated eigenvalue. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Ren-Cang Li, Computer Science Division, University of California */ /* at Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --delta; --z__; --d__; /* Function Body */ del = d__[2] - d__[1]; if (*i__ == 1) { w = *rho * 2. * (z__[2] * z__[2] - z__[1] * z__[1]) / del + 1.; if (w > 0.) { b = del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); c__ = *rho * z__[1] * z__[1] * del; /* B > ZERO, always */ tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1)))); *dlam = d__[1] + tau; delta[1] = -z__[1] / tau; delta[2] = z__[2] / (del - tau); } else { b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); c__ = *rho * z__[2] * z__[2] * del; if (b > 0.) { tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.)); } else { tau = (b - sqrt(b * b + c__ * 4.)) / 2.; } *dlam = d__[2] + tau; delta[1] = -z__[1] / (del + tau); delta[2] = -z__[2] / tau; } temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]); delta[1] /= temp; delta[2] /= temp; } else { /* Now I=2 */ b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); c__ = *rho * z__[2] * z__[2] * del; if (b > 0.) { tau = (b + sqrt(b * b + c__ * 4.)) / 2.; } else { tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.)); } *dlam = d__[2] + tau; delta[1] = -z__[1] / (del + tau); delta[2] = -z__[2] / tau; temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]); delta[1] /= temp; delta[2] /= temp; } return 0; /* End OF DLAED5 */ } /* dlaed5_ */