#include "clapack.h" /* Subroutine */ int dlarra_(integer *n, doublereal *d__, doublereal *e, doublereal *e2, doublereal *spltol, doublereal *tnrm, integer *nsplit, integer *isplit, integer *info) { /* System generated locals */ integer i__1; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__; doublereal tmp1, eabs; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* Compute the splitting points with threshold SPLTOL. */ /* DLARRA sets any "small" off-diagonal elements to zero. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix. N > 0. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* On entry, the N diagonal elements of the tridiagonal */ /* matrix T. */ /* E (input/output) DOUBLE PRECISION array, dimension (N) */ /* On entry, the first (N-1) entries contain the subdiagonal */ /* elements of the tridiagonal matrix T; E(N) need not be set. */ /* On exit, the entries E( ISPLIT( I ) ), 1 <= I <= NSPLIT, */ /* are set to zero, the other entries of E are untouched. */ /* E2 (input/output) DOUBLE PRECISION array, dimension (N) */ /* On entry, the first (N-1) entries contain the SQUARES of the */ /* subdiagonal elements of the tridiagonal matrix T; */ /* E2(N) need not be set. */ /* On exit, the entries E2( ISPLIT( I ) ), */ /* 1 <= I <= NSPLIT, have been set to zero */ /* SPLTOL (input) DOUBLE PRECISION */ /* The threshold for splitting. Two criteria can be used: */ /* SPLTOL<0 : criterion based on absolute off-diagonal value */ /* SPLTOL>0 : criterion that preserves relative accuracy */ /* TNRM (input) DOUBLE PRECISION */ /* The norm of the matrix. */ /* NSPLIT (output) INTEGER */ /* The number of blocks T splits into. 1 <= NSPLIT <= N. */ /* ISPLIT (output) INTEGER array, dimension (N) */ /* The splitting points, at which T breaks up into blocks. */ /* The first block consists of rows/columns 1 to ISPLIT(1), */ /* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */ /* etc., and the NSPLIT-th consists of rows/columns */ /* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Beresford Parlett, University of California, Berkeley, USA */ /* Jim Demmel, University of California, Berkeley, USA */ /* Inderjit Dhillon, University of Texas, Austin, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* Christof Voemel, University of California, Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --isplit; --e2; --e; --d__; /* Function Body */ *info = 0; /* Compute splitting points */ *nsplit = 1; if (*spltol < 0.) { /* Criterion based on absolute off-diagonal value */ tmp1 = abs(*spltol) * *tnrm; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { eabs = (d__1 = e[i__], abs(d__1)); if (eabs <= tmp1) { e[i__] = 0.; e2[i__] = 0.; isplit[*nsplit] = i__; ++(*nsplit); } /* L9: */ } } else { /* Criterion that guarantees relative accuracy */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { eabs = (d__1 = e[i__], abs(d__1)); if (eabs <= *spltol * sqrt((d__1 = d__[i__], abs(d__1))) * sqrt(( d__2 = d__[i__ + 1], abs(d__2)))) { e[i__] = 0.; e2[i__] = 0.; isplit[*nsplit] = i__; ++(*nsplit); } /* L10: */ } } isplit[*nsplit] = *n; return 0; /* End of DLARRA */ } /* dlarra_ */