#include "clapack.h" /* Subroutine */ int slarfg_(integer *n, real *alpha, real *x, integer *incx, real *tau) { /* System generated locals */ integer i__1; real r__1; /* Builtin functions */ double r_sign(real *, real *); /* Local variables */ integer j, knt; real beta; extern doublereal snrm2_(integer *, real *, integer *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); real xnorm; extern doublereal slapy2_(real *, real *), slamch_(char *); real safmin, rsafmn; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLARFG generates a real elementary reflector H of order n, such */ /* that */ /* H * ( alpha ) = ( beta ), H' * H = I. */ /* ( x ) ( 0 ) */ /* where alpha and beta are scalars, and x is an (n-1)-element real */ /* vector. H is represented in the form */ /* H = I - tau * ( 1 ) * ( 1 v' ) , */ /* ( v ) */ /* where tau is a real scalar and v is a real (n-1)-element */ /* vector. */ /* If the elements of x are all zero, then tau = 0 and H is taken to be */ /* the unit matrix. */ /* Otherwise 1 <= tau <= 2. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the elementary reflector. */ /* ALPHA (input/output) REAL */ /* On entry, the value alpha. */ /* On exit, it is overwritten with the value beta. */ /* X (input/output) REAL array, dimension */ /* (1+(N-2)*abs(INCX)) */ /* On entry, the vector x. */ /* On exit, it is overwritten with the vector v. */ /* INCX (input) INTEGER */ /* The increment between elements of X. INCX > 0. */ /* TAU (output) REAL */ /* The value tau. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --x; /* Function Body */ if (*n <= 1) { *tau = 0.f; return 0; } i__1 = *n - 1; xnorm = snrm2_(&i__1, &x[1], incx); if (xnorm == 0.f) { /* H = I */ *tau = 0.f; } else { /* general case */ r__1 = slapy2_(alpha, &xnorm); beta = -r_sign(&r__1, alpha); safmin = slamch_("S") / slamch_("E"); if (dabs(beta) < safmin) { /* XNORM, BETA may be inaccurate; scale X and recompute them */ rsafmn = 1.f / safmin; knt = 0; L10: ++knt; i__1 = *n - 1; sscal_(&i__1, &rsafmn, &x[1], incx); beta *= rsafmn; *alpha *= rsafmn; if (dabs(beta) < safmin) { goto L10; } /* New BETA is at most 1, at least SAFMIN */ i__1 = *n - 1; xnorm = snrm2_(&i__1, &x[1], incx); r__1 = slapy2_(alpha, &xnorm); beta = -r_sign(&r__1, alpha); *tau = (beta - *alpha) / beta; i__1 = *n - 1; r__1 = 1.f / (*alpha - beta); sscal_(&i__1, &r__1, &x[1], incx); /* If ALPHA is subnormal, it may lose relative accuracy */ *alpha = beta; i__1 = knt; for (j = 1; j <= i__1; ++j) { *alpha *= safmin; /* L20: */ } } else { *tau = (beta - *alpha) / beta; i__1 = *n - 1; r__1 = 1.f / (*alpha - beta); sscal_(&i__1, &r__1, &x[1], incx); *alpha = beta; } } return 0; /* End of SLARFG */ } /* slarfg_ */