#include "clapack.h" /* Subroutine */ int slarrb_(integer *n, real *d__, real *lld, integer * ifirst, integer *ilast, real *rtol1, real *rtol2, integer *offset, real *w, real *wgap, real *werr, real *work, integer *iwork, real * pivmin, real *spdiam, integer *twist, integer *info) { /* System generated locals */ integer i__1; real r__1, r__2; /* Builtin functions */ double log(doublereal); /* Local variables */ integer i__, k, r__, i1, ii, ip; real gap, mid, tmp, back, lgap, rgap, left; integer iter, nint, prev, next; real cvrgd, right, width; extern integer slaneg_(integer *, real *, real *, real *, real *, integer *); integer negcnt; real mnwdth; integer olnint, maxitr; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* Given the relatively robust representation(RRR) L D L^T, SLARRB */ /* does "limited" bisection to refine the eigenvalues of L D L^T, */ /* W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial */ /* guesses for these eigenvalues are input in W, the corresponding estimate */ /* of the error in these guesses and their gaps are input in WERR */ /* and WGAP, respectively. During bisection, intervals */ /* [left, right] are maintained by storing their mid-points and */ /* semi-widths in the arrays W and WERR respectively. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix. */ /* D (input) REAL array, dimension (N) */ /* The N diagonal elements of the diagonal matrix D. */ /* LLD (input) REAL array, dimension (N-1) */ /* The (N-1) elements L(i)*L(i)*D(i). */ /* IFIRST (input) INTEGER */ /* The index of the first eigenvalue to be computed. */ /* ILAST (input) INTEGER */ /* The index of the last eigenvalue to be computed. */ /* RTOL1 (input) REAL */ /* RTOL2 (input) REAL */ /* Tolerance for the convergence of the bisection intervals. */ /* An interval [LEFT,RIGHT] has converged if */ /* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */ /* where GAP is the (estimated) distance to the nearest */ /* eigenvalue. */ /* OFFSET (input) INTEGER */ /* Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET */ /* through ILAST-OFFSET elements of these arrays are to be used. */ /* W (input/output) REAL array, dimension (N) */ /* On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are */ /* estimates of the eigenvalues of L D L^T indexed IFIRST throug */ /* ILAST. */ /* On output, these estimates are refined. */ /* WGAP (input/output) REAL array, dimension (N-1) */ /* On input, the (estimated) gaps between consecutive */ /* eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between */ /* eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST */ /* then WGAP(IFIRST-OFFSET) must be set to ZERO. */ /* On output, these gaps are refined. */ /* WERR (input/output) REAL array, dimension (N) */ /* On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are */ /* the errors in the estimates of the corresponding elements in W. */ /* On output, these errors are refined. */ /* WORK (workspace) REAL array, dimension (2*N) */ /* Workspace. */ /* IWORK (workspace) INTEGER array, dimension (2*N) */ /* Workspace. */ /* PIVMIN (input) DOUBLE PRECISION */ /* The minimum pivot in the Sturm sequence. */ /* SPDIAM (input) DOUBLE PRECISION */ /* The spectral diameter of the matrix. */ /* TWIST (input) INTEGER */ /* The twist index for the twisted factorization that is used */ /* for the negcount. */ /* TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T */ /* TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T */ /* TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r) */ /* INFO (output) INTEGER */ /* Error flag. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Beresford Parlett, University of California, Berkeley, USA */ /* Jim Demmel, University of California, Berkeley, USA */ /* Inderjit Dhillon, University of Texas, Austin, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* Christof Voemel, University of California, Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --iwork; --work; --werr; --wgap; --w; --lld; --d__; /* Function Body */ *info = 0; maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.f)) + 2; mnwdth = *pivmin * 2.f; r__ = *twist; if (r__ < 1 || r__ > *n) { r__ = *n; } /* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. */ /* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while */ /* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) */ /* for an unconverged interval is set to the index of the next unconverged */ /* interval, and is -1 or 0 for a converged interval. Thus a linked */ /* list of unconverged intervals is set up. */ i1 = *ifirst; /* The number of unconverged intervals */ nint = 0; /* The last unconverged interval found */ prev = 0; rgap = wgap[i1 - *offset]; i__1 = *ilast; for (i__ = i1; i__ <= i__1; ++i__) { k = i__ << 1; ii = i__ - *offset; left = w[ii] - werr[ii]; right = w[ii] + werr[ii]; lgap = rgap; rgap = wgap[ii]; gap = dmin(lgap,rgap); /* Make sure that [LEFT,RIGHT] contains the desired eigenvalue */ /* Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT */ /* Do while( NEGCNT(LEFT).GT.I-1 ) */ back = werr[ii]; L20: negcnt = slaneg_(n, &d__[1], &lld[1], &left, pivmin, &r__); if (negcnt > i__ - 1) { left -= back; back *= 2.f; goto L20; } /* Do while( NEGCNT(RIGHT).LT.I ) */ /* Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT */ back = werr[ii]; L50: negcnt = slaneg_(n, &d__[1], &lld[1], &right, pivmin, &r__); if (negcnt < i__) { right += back; back *= 2.f; goto L50; } width = (r__1 = left - right, dabs(r__1)) * .5f; /* Computing MAX */ r__1 = dabs(left), r__2 = dabs(right); tmp = dmax(r__1,r__2); /* Computing MAX */ r__1 = *rtol1 * gap, r__2 = *rtol2 * tmp; cvrgd = dmax(r__1,r__2); if (width <= cvrgd || width <= mnwdth) { /* This interval has already converged and does not need refinement. */ /* (Note that the gaps might change through refining the */ /* eigenvalues, however, they can only get bigger.) */ /* Remove it from the list. */ iwork[k - 1] = -1; /* Make sure that I1 always points to the first unconverged interval */ if (i__ == i1 && i__ < *ilast) { i1 = i__ + 1; } if (prev >= i1 && i__ <= *ilast) { iwork[(prev << 1) - 1] = i__ + 1; } } else { /* unconverged interval found */ prev = i__; ++nint; iwork[k - 1] = i__ + 1; iwork[k] = negcnt; } work[k - 1] = left; work[k] = right; /* L75: */ } /* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals */ /* and while (ITER.LT.MAXITR) */ iter = 0; L80: prev = i1 - 1; i__ = i1; olnint = nint; i__1 = olnint; for (ip = 1; ip <= i__1; ++ip) { k = i__ << 1; ii = i__ - *offset; rgap = wgap[ii]; lgap = rgap; if (ii > 1) { lgap = wgap[ii - 1]; } gap = dmin(lgap,rgap); next = iwork[k - 1]; left = work[k - 1]; right = work[k]; mid = (left + right) * .5f; /* semiwidth of interval */ width = right - mid; /* Computing MAX */ r__1 = dabs(left), r__2 = dabs(right); tmp = dmax(r__1,r__2); /* Computing MAX */ r__1 = *rtol1 * gap, r__2 = *rtol2 * tmp; cvrgd = dmax(r__1,r__2); if (width <= cvrgd || width <= mnwdth || iter == maxitr) { /* reduce number of unconverged intervals */ --nint; /* Mark interval as converged. */ iwork[k - 1] = 0; if (i1 == i__) { i1 = next; } else { /* Prev holds the last unconverged interval previously examined */ if (prev >= i1) { iwork[(prev << 1) - 1] = next; } } i__ = next; goto L100; } prev = i__; /* Perform one bisection step */ negcnt = slaneg_(n, &d__[1], &lld[1], &mid, pivmin, &r__); if (negcnt <= i__ - 1) { work[k - 1] = mid; } else { work[k] = mid; } i__ = next; L100: ; } ++iter; /* do another loop if there are still unconverged intervals */ /* However, in the last iteration, all intervals are accepted */ /* since this is the best we can do. */ if (nint > 0 && iter <= maxitr) { goto L80; } /* At this point, all the intervals have converged */ i__1 = *ilast; for (i__ = *ifirst; i__ <= i__1; ++i__) { k = i__ << 1; ii = i__ - *offset; /* All intervals marked by '0' have been refined. */ if (iwork[k - 1] == 0) { w[ii] = (work[k - 1] + work[k]) * .5f; werr[ii] = work[k] - w[ii]; } /* L110: */ } i__1 = *ilast; for (i__ = *ifirst + 1; i__ <= i__1; ++i__) { k = i__ << 1; ii = i__ - *offset; /* Computing MAX */ r__1 = 0.f, r__2 = w[ii] - werr[ii] - w[ii - 1] - werr[ii - 1]; wgap[ii - 1] = dmax(r__1,r__2); /* L111: */ } return 0; /* End of SLARRB */ } /* slarrb_ */