#include "clapack.h" /* Subroutine */ int slarrj_(integer *n, real *d__, real *e2, integer *ifirst, integer *ilast, real *rtol, integer *offset, real *w, real *werr, real *work, integer *iwork, real *pivmin, real *spdiam, integer *info) { /* System generated locals */ integer i__1, i__2; real r__1, r__2; /* Builtin functions */ double log(doublereal); /* Local variables */ integer i__, j, k, p; real s; integer i1, i2, ii; real fac, mid; integer cnt; real tmp, left; integer iter, nint, prev, next, savi1; real right, width, dplus; integer olnint, maxitr; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* Given the initial eigenvalue approximations of T, SLARRJ */ /* does bisection to refine the eigenvalues of T, */ /* W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial */ /* guesses for these eigenvalues are input in W, the corresponding estimate */ /* of the error in these guesses in WERR. During bisection, intervals */ /* [left, right] are maintained by storing their mid-points and */ /* semi-widths in the arrays W and WERR respectively. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix. */ /* D (input) REAL array, dimension (N) */ /* The N diagonal elements of T. */ /* E2 (input) REAL array, dimension (N-1) */ /* The Squares of the (N-1) subdiagonal elements of T. */ /* IFIRST (input) INTEGER */ /* The index of the first eigenvalue to be computed. */ /* ILAST (input) INTEGER */ /* The index of the last eigenvalue to be computed. */ /* RTOL (input) REAL */ /* Tolerance for the convergence of the bisection intervals. */ /* An interval [LEFT,RIGHT] has converged if */ /* RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|). */ /* OFFSET (input) INTEGER */ /* Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET */ /* through ILAST-OFFSET elements of these arrays are to be used. */ /* W (input/output) REAL array, dimension (N) */ /* On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are */ /* estimates of the eigenvalues of L D L^T indexed IFIRST through */ /* ILAST. */ /* On output, these estimates are refined. */ /* WERR (input/output) REAL array, dimension (N) */ /* On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are */ /* the errors in the estimates of the corresponding elements in W. */ /* On output, these errors are refined. */ /* WORK (workspace) REAL array, dimension (2*N) */ /* Workspace. */ /* IWORK (workspace) INTEGER array, dimension (2*N) */ /* Workspace. */ /* PIVMIN (input) DOUBLE PRECISION */ /* The minimum pivot in the Sturm sequence for T. */ /* SPDIAM (input) DOUBLE PRECISION */ /* The spectral diameter of T. */ /* INFO (output) INTEGER */ /* Error flag. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Beresford Parlett, University of California, Berkeley, USA */ /* Jim Demmel, University of California, Berkeley, USA */ /* Inderjit Dhillon, University of Texas, Austin, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* Christof Voemel, University of California, Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --iwork; --work; --werr; --w; --e2; --d__; /* Function Body */ *info = 0; maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.f)) + 2; /* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. */ /* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while */ /* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) */ /* for an unconverged interval is set to the index of the next unconverged */ /* interval, and is -1 or 0 for a converged interval. Thus a linked */ /* list of unconverged intervals is set up. */ i1 = *ifirst; i2 = *ilast; /* The number of unconverged intervals */ nint = 0; /* The last unconverged interval found */ prev = 0; i__1 = i2; for (i__ = i1; i__ <= i__1; ++i__) { k = i__ << 1; ii = i__ - *offset; left = w[ii] - werr[ii]; mid = w[ii]; right = w[ii] + werr[ii]; width = right - mid; /* Computing MAX */ r__1 = dabs(left), r__2 = dabs(right); tmp = dmax(r__1,r__2); /* The following test prevents the test of converged intervals */ if (width < *rtol * tmp) { /* This interval has already converged and does not need refinement. */ /* (Note that the gaps might change through refining the */ /* eigenvalues, however, they can only get bigger.) */ /* Remove it from the list. */ iwork[k - 1] = -1; /* Make sure that I1 always points to the first unconverged interval */ if (i__ == i1 && i__ < i2) { i1 = i__ + 1; } if (prev >= i1 && i__ <= i2) { iwork[(prev << 1) - 1] = i__ + 1; } } else { /* unconverged interval found */ prev = i__; /* Make sure that [LEFT,RIGHT] contains the desired eigenvalue */ /* Do while( CNT(LEFT).GT.I-1 ) */ fac = 1.f; L20: cnt = 0; s = left; dplus = d__[1] - s; if (dplus < 0.f) { ++cnt; } i__2 = *n; for (j = 2; j <= i__2; ++j) { dplus = d__[j] - s - e2[j - 1] / dplus; if (dplus < 0.f) { ++cnt; } /* L30: */ } if (cnt > i__ - 1) { left -= werr[ii] * fac; fac *= 2.f; goto L20; } /* Do while( CNT(RIGHT).LT.I ) */ fac = 1.f; L50: cnt = 0; s = right; dplus = d__[1] - s; if (dplus < 0.f) { ++cnt; } i__2 = *n; for (j = 2; j <= i__2; ++j) { dplus = d__[j] - s - e2[j - 1] / dplus; if (dplus < 0.f) { ++cnt; } /* L60: */ } if (cnt < i__) { right += werr[ii] * fac; fac *= 2.f; goto L50; } ++nint; iwork[k - 1] = i__ + 1; iwork[k] = cnt; } work[k - 1] = left; work[k] = right; /* L75: */ } savi1 = i1; /* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals */ /* and while (ITER.LT.MAXITR) */ iter = 0; L80: prev = i1 - 1; i__ = i1; olnint = nint; i__1 = olnint; for (p = 1; p <= i__1; ++p) { k = i__ << 1; ii = i__ - *offset; next = iwork[k - 1]; left = work[k - 1]; right = work[k]; mid = (left + right) * .5f; /* semiwidth of interval */ width = right - mid; /* Computing MAX */ r__1 = dabs(left), r__2 = dabs(right); tmp = dmax(r__1,r__2); if (width < *rtol * tmp || iter == maxitr) { /* reduce number of unconverged intervals */ --nint; /* Mark interval as converged. */ iwork[k - 1] = 0; if (i1 == i__) { i1 = next; } else { /* Prev holds the last unconverged interval previously examined */ if (prev >= i1) { iwork[(prev << 1) - 1] = next; } } i__ = next; goto L100; } prev = i__; /* Perform one bisection step */ cnt = 0; s = mid; dplus = d__[1] - s; if (dplus < 0.f) { ++cnt; } i__2 = *n; for (j = 2; j <= i__2; ++j) { dplus = d__[j] - s - e2[j - 1] / dplus; if (dplus < 0.f) { ++cnt; } /* L90: */ } if (cnt <= i__ - 1) { work[k - 1] = mid; } else { work[k] = mid; } i__ = next; L100: ; } ++iter; /* do another loop if there are still unconverged intervals */ /* However, in the last iteration, all intervals are accepted */ /* since this is the best we can do. */ if (nint > 0 && iter <= maxitr) { goto L80; } /* At this point, all the intervals have converged */ i__1 = *ilast; for (i__ = savi1; i__ <= i__1; ++i__) { k = i__ << 1; ii = i__ - *offset; /* All intervals marked by '0' have been refined. */ if (iwork[k - 1] == 0) { w[ii] = (work[k - 1] + work[k]) * .5f; werr[ii] = work[k] - w[ii]; } /* L110: */ } return 0; /* End of SLARRJ */ } /* slarrj_ */