#include "clapack.h" /* Subroutine */ int slas2_(real *f, real *g, real *h__, real *ssmin, real * ssmax) { /* System generated locals */ real r__1, r__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ real c__, fa, ga, ha, as, at, au, fhmn, fhmx; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAS2 computes the singular values of the 2-by-2 matrix */ /* [ F G ] */ /* [ 0 H ]. */ /* On return, SSMIN is the smaller singular value and SSMAX is the */ /* larger singular value. */ /* Arguments */ /* ========= */ /* F (input) REAL */ /* The (1,1) element of the 2-by-2 matrix. */ /* G (input) REAL */ /* The (1,2) element of the 2-by-2 matrix. */ /* H (input) REAL */ /* The (2,2) element of the 2-by-2 matrix. */ /* SSMIN (output) REAL */ /* The smaller singular value. */ /* SSMAX (output) REAL */ /* The larger singular value. */ /* Further Details */ /* =============== */ /* Barring over/underflow, all output quantities are correct to within */ /* a few units in the last place (ulps), even in the absence of a guard */ /* digit in addition/subtraction. */ /* In IEEE arithmetic, the code works correctly if one matrix element is */ /* infinite. */ /* Overflow will not occur unless the largest singular value itself */ /* overflows, or is within a few ulps of overflow. (On machines with */ /* partial overflow, like the Cray, overflow may occur if the largest */ /* singular value is within a factor of 2 of overflow.) */ /* Underflow is harmless if underflow is gradual. Otherwise, results */ /* may correspond to a matrix modified by perturbations of size near */ /* the underflow threshold. */ /* ==================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ fa = dabs(*f); ga = dabs(*g); ha = dabs(*h__); fhmn = dmin(fa,ha); fhmx = dmax(fa,ha); if (fhmn == 0.f) { *ssmin = 0.f; if (fhmx == 0.f) { *ssmax = ga; } else { /* Computing 2nd power */ r__1 = dmin(fhmx,ga) / dmax(fhmx,ga); *ssmax = dmax(fhmx,ga) * sqrt(r__1 * r__1 + 1.f); } } else { if (ga < fhmx) { as = fhmn / fhmx + 1.f; at = (fhmx - fhmn) / fhmx; /* Computing 2nd power */ r__1 = ga / fhmx; au = r__1 * r__1; c__ = 2.f / (sqrt(as * as + au) + sqrt(at * at + au)); *ssmin = fhmn * c__; *ssmax = fhmx / c__; } else { au = fhmx / ga; if (au == 0.f) { /* Avoid possible harmful underflow if exponent range */ /* asymmetric (true SSMIN may not underflow even if */ /* AU underflows) */ *ssmin = fhmn * fhmx / ga; *ssmax = ga; } else { as = fhmn / fhmx + 1.f; at = (fhmx - fhmn) / fhmx; /* Computing 2nd power */ r__1 = as * au; /* Computing 2nd power */ r__2 = at * au; c__ = 1.f / (sqrt(r__1 * r__1 + 1.f) + sqrt(r__2 * r__2 + 1.f) ); *ssmin = fhmn * c__ * au; *ssmin += *ssmin; *ssmax = ga / (c__ + c__); } } } return 0; /* End of SLAS2 */ } /* slas2_ */