#include "clapack.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int sorm2l_(char *side, char *trans, integer *m, integer *n, integer *k, real *a, integer *lda, real *tau, real *c__, integer *ldc, real *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2; /* Local variables */ integer i__, i1, i2, i3, mi, ni, nq; real aii; logical left; extern logical lsame_(char *, char *); extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *), xerbla_( char *, integer *); logical notran; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SORM2L overwrites the general real m by n matrix C with */ /* Q * C if SIDE = 'L' and TRANS = 'N', or */ /* Q'* C if SIDE = 'L' and TRANS = 'T', or */ /* C * Q if SIDE = 'R' and TRANS = 'N', or */ /* C * Q' if SIDE = 'R' and TRANS = 'T', */ /* where Q is a real orthogonal matrix defined as the product of k */ /* elementary reflectors */ /* Q = H(k) . . . H(2) H(1) */ /* as returned by SGEQLF. Q is of order m if SIDE = 'L' and of order n */ /* if SIDE = 'R'. */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'L': apply Q or Q' from the Left */ /* = 'R': apply Q or Q' from the Right */ /* TRANS (input) CHARACTER*1 */ /* = 'N': apply Q (No transpose) */ /* = 'T': apply Q' (Transpose) */ /* M (input) INTEGER */ /* The number of rows of the matrix C. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. N >= 0. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines */ /* the matrix Q. */ /* If SIDE = 'L', M >= K >= 0; */ /* if SIDE = 'R', N >= K >= 0. */ /* A (input) REAL array, dimension (LDA,K) */ /* The i-th column must contain the vector which defines the */ /* elementary reflector H(i), for i = 1,2,...,k, as returned by */ /* SGEQLF in the last k columns of its array argument A. */ /* A is modified by the routine but restored on exit. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. */ /* If SIDE = 'L', LDA >= max(1,M); */ /* if SIDE = 'R', LDA >= max(1,N). */ /* TAU (input) REAL array, dimension (K) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by SGEQLF. */ /* C (input/output) REAL array, dimension (LDC,N) */ /* On entry, the m by n matrix C. */ /* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */ /* LDC (input) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,M). */ /* WORK (workspace) REAL array, dimension */ /* (N) if SIDE = 'L', */ /* (M) if SIDE = 'R' */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; left = lsame_(side, "L"); notran = lsame_(trans, "N"); /* NQ is the order of Q */ if (left) { nq = *m; } else { nq = *n; } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! notran && ! lsame_(trans, "T")) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*k < 0 || *k > nq) { *info = -5; } else if (*lda < max(1,nq)) { *info = -7; } else if (*ldc < max(1,*m)) { *info = -10; } if (*info != 0) { i__1 = -(*info); xerbla_("SORM2L", &i__1); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0 || *k == 0) { return 0; } if (left && notran || ! left && ! notran) { i1 = 1; i2 = *k; i3 = 1; } else { i1 = *k; i2 = 1; i3 = -1; } if (left) { ni = *n; } else { mi = *m; } i__1 = i2; i__2 = i3; for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { if (left) { /* H(i) is applied to C(1:m-k+i,1:n) */ mi = *m - *k + i__; } else { /* H(i) is applied to C(1:m,1:n-k+i) */ ni = *n - *k + i__; } /* Apply H(i) */ aii = a[nq - *k + i__ + i__ * a_dim1]; a[nq - *k + i__ + i__ * a_dim1] = 1.f; slarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &tau[i__], &c__[ c_offset], ldc, &work[1]); a[nq - *k + i__ + i__ * a_dim1] = aii; /* L10: */ } return 0; /* End of SORM2L */ } /* sorm2l_ */