/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Sen Liu, sen@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #define BUFFER 256 void reduce3(float val1, float val2, float val3, __local float *smem1, __local float *smem2, __local float *smem3, int tid) { smem1[tid] = val1; smem2[tid] = val2; smem3[tid] = val3; barrier(CLK_LOCAL_MEM_FENCE); #if BUFFER > 128 if (tid < 128) { smem1[tid] = val1 += smem1[tid + 128]; smem2[tid] = val2 += smem2[tid + 128]; smem3[tid] = val3 += smem3[tid + 128]; } barrier(CLK_LOCAL_MEM_FENCE); #endif #if BUFFER > 64 if (tid < 64) { smem1[tid] = val1 += smem1[tid + 64]; smem2[tid] = val2 += smem2[tid + 64]; smem3[tid] = val3 += smem3[tid + 64]; } barrier(CLK_LOCAL_MEM_FENCE); #endif if (tid < 32) { smem1[tid] = val1 += smem1[tid + 32]; smem2[tid] = val2 += smem2[tid + 32]; smem3[tid] = val3 += smem3[tid + 32]; } barrier(CLK_LOCAL_MEM_FENCE); if (tid < 16) { smem1[tid] = val1 += smem1[tid + 16]; smem2[tid] = val2 += smem2[tid + 16]; smem3[tid] = val3 += smem3[tid + 16]; } barrier(CLK_LOCAL_MEM_FENCE); if (tid < 8) { volatile __local float *vmem1 = smem1; volatile __local float *vmem2 = smem2; volatile __local float *vmem3 = smem3; vmem1[tid] = val1 += vmem1[tid + 8]; vmem2[tid] = val2 += vmem2[tid + 8]; vmem3[tid] = val3 += vmem3[tid + 8]; vmem1[tid] = val1 += vmem1[tid + 4]; vmem2[tid] = val2 += vmem2[tid + 4]; vmem3[tid] = val3 += vmem3[tid + 4]; vmem1[tid] = val1 += vmem1[tid + 2]; vmem2[tid] = val2 += vmem2[tid + 2]; vmem3[tid] = val3 += vmem3[tid + 2]; vmem1[tid] = val1 += vmem1[tid + 1]; vmem2[tid] = val2 += vmem2[tid + 1]; vmem3[tid] = val3 += vmem3[tid + 1]; } } void reduce2(float val1, float val2, __local float *smem1, __local float *smem2, int tid) { smem1[tid] = val1; smem2[tid] = val2; barrier(CLK_LOCAL_MEM_FENCE); #if BUFFER > 128 if (tid < 128) { smem1[tid] = val1 += smem1[tid + 128]; smem2[tid] = val2 += smem2[tid + 128]; } barrier(CLK_LOCAL_MEM_FENCE); #endif #if BUFFER > 64 if (tid < 64) { smem1[tid] = val1 += smem1[tid + 64]; smem2[tid] = val2 += smem2[tid + 64]; } barrier(CLK_LOCAL_MEM_FENCE); #endif if (tid < 32) { smem1[tid] = val1 += smem1[tid + 32]; smem2[tid] = val2 += smem2[tid + 32]; } barrier(CLK_LOCAL_MEM_FENCE); if (tid < 16) { smem1[tid] = val1 += smem1[tid + 16]; smem2[tid] = val2 += smem2[tid + 16]; } barrier(CLK_LOCAL_MEM_FENCE); if (tid < 8) { volatile __local float *vmem1 = smem1; volatile __local float *vmem2 = smem2; vmem1[tid] = val1 += vmem1[tid + 8]; vmem2[tid] = val2 += vmem2[tid + 8]; vmem1[tid] = val1 += vmem1[tid + 4]; vmem2[tid] = val2 += vmem2[tid + 4]; vmem1[tid] = val1 += vmem1[tid + 2]; vmem2[tid] = val2 += vmem2[tid + 2]; vmem1[tid] = val1 += vmem1[tid + 1]; vmem2[tid] = val2 += vmem2[tid + 1]; } } void reduce1(float val1, __local float *smem1, int tid) { smem1[tid] = val1; barrier(CLK_LOCAL_MEM_FENCE); #if BUFFER > 128 if (tid < 128) { smem1[tid] = val1 += smem1[tid + 128]; } barrier(CLK_LOCAL_MEM_FENCE); #endif #if BUFFER > 64 if (tid < 64) { smem1[tid] = val1 += smem1[tid + 64]; } barrier(CLK_LOCAL_MEM_FENCE); #endif if (tid < 32) { smem1[tid] = val1 += smem1[tid + 32]; } barrier(CLK_LOCAL_MEM_FENCE); if (tid < 16) { volatile __local float *vmem1 = smem1; vmem1[tid] = val1 += vmem1[tid + 16]; } barrier(CLK_LOCAL_MEM_FENCE); if (tid < 8) { volatile __local float *vmem1 = smem1; vmem1[tid] = val1 += vmem1[tid + 8]; vmem1[tid] = val1 += vmem1[tid + 4]; vmem1[tid] = val1 += vmem1[tid + 2]; vmem1[tid] = val1 += vmem1[tid + 1]; } } #define SCALE (1.0f / (1 << 20)) #define THRESHOLD 0.01f #define DIMENSION 21 float readImage2Df_C1(__global const float *image, const float x, const float y, const int rows, const int cols, const int elemCntPerRow) { float2 coor = (float2)(x, y); int i0 = clamp((int)floor(coor.x), 0, cols - 1); int j0 = clamp((int)floor(coor.y), 0, rows - 1); int i1 = clamp((int)floor(coor.x) + 1, 0, cols - 1); int j1 = clamp((int)floor(coor.y) + 1, 0, rows - 1); float a = coor.x - floor(coor.x); float b = coor.y - floor(coor.y); return (1 - a) * (1 - b) * image[mad24(j0, elemCntPerRow, i0)] + a * (1 - b) * image[mad24(j0, elemCntPerRow, i1)] + (1 - a) * b * image[mad24(j1, elemCntPerRow, i0)] + a * b * image[mad24(j1, elemCntPerRow, i1)]; } __kernel void lkSparse_C1_D5(__global const float *I, __global const float *J, __global const float2 *prevPts, int prevPtsStep, __global float2 *nextPts, int nextPtsStep, __global uchar *status, __global float *err, const int level, const int rows, const int cols, const int elemCntPerRow, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr) { __local float smem1[BUFFER]; __local float smem2[BUFFER]; __local float smem3[BUFFER]; float2 c_halfWin = (float2)((c_winSize_x - 1) >> 1, (c_winSize_y - 1) >> 1); const int tid = mad24(get_local_id(1), get_local_size(0), get_local_id(0)); float2 prevPt = prevPts[get_group_id(0)] * (1.0f / (1 << level)); if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows) { if (tid == 0 && level == 0) { status[get_group_id(0)] = 0; } return; } prevPt -= c_halfWin; // extract the patch from the first image, compute covariation matrix of derivatives float A11 = 0; float A12 = 0; float A22 = 0; float I_patch[1][3]; float dIdx_patch[1][3]; float dIdy_patch[1][3]; for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i) { for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j) { float x = (prevPt.x + xBase); float y = (prevPt.y + yBase); I_patch[i][j] = readImage2Df_C1(I, x, y, rows, cols, elemCntPerRow); float dIdx = 3.0f * readImage2Df_C1(I, x + 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x + 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y + 1, rows, cols, elemCntPerRow) - (3.0f * readImage2Df_C1(I, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x - 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x - 1, y + 1, rows, cols, elemCntPerRow)); float dIdy = 3.0f * readImage2Df_C1(I, x - 1, y + 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x, y + 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y + 1, rows, cols, elemCntPerRow) - (3.0f * readImage2Df_C1(I, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x, y - 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y - 1, rows, cols, elemCntPerRow)); dIdx_patch[i][j] = dIdx; dIdy_patch[i][j] = dIdy; A11 += dIdx * dIdx; A12 += dIdx * dIdy; A22 += dIdy * dIdy; } } reduce3(A11, A12, A22, smem1, smem2, smem3, tid); barrier(CLK_LOCAL_MEM_FENCE); A11 = smem1[0]; A12 = smem2[0]; A22 = smem3[0]; float D = A11 * A22 - A12 * A12; if (D < 1.192092896e-07f) { if (tid == 0 && level == 0) { status[get_group_id(0)] = 0; } return; } D = 1.f / D; A11 *= D; A12 *= D; A22 *= D; float2 nextPt = nextPts[get_group_id(0)]; nextPt = nextPt * 2.0f - c_halfWin; for (int k = 0; k < c_iters; ++k) { if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows) { if (tid == 0 && level == 0) { status[get_group_id(0)] = 0; } return; } float b1 = 0; float b2 = 0; for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i) { for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j) { float diff = (readImage2Df_C1(J, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]) * 32.0f; b1 += diff * dIdx_patch[i][j]; b2 += diff * dIdy_patch[i][j]; } } reduce2(b1, b2, smem1, smem2, tid); barrier(CLK_LOCAL_MEM_FENCE); b1 = smem1[0]; b2 = smem2[0]; float2 delta; delta.x = A12 * b2 - A22 * b1; delta.y = A12 * b1 - A11 * b2; nextPt += delta; //if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD) // break; } float errval = 0.0f; if (calcErr) { for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i) { for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j) { float diff = readImage2Df_C1(J, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]; errval += fabs(diff); } } reduce1(errval, smem1, tid); } if (tid == 0) { nextPt += c_halfWin; nextPts[get_group_id(0)] = nextPt; if (calcErr) { err[get_group_id(0)] = smem1[0] / (c_winSize_x * c_winSize_y); } } } float4 readImage2Df_C4(__global const float4 *image, const float x, const float y, const int rows, const int cols, const int elemCntPerRow) { float2 coor = (float2)(x, y); int i0 = clamp((int)floor(coor.x), 0, cols - 1); int j0 = clamp((int)floor(coor.y), 0, rows - 1); int i1 = clamp((int)floor(coor.x) + 1, 0, cols - 1); int j1 = clamp((int)floor(coor.y) + 1, 0, rows - 1); float a = coor.x - floor(coor.x); float b = coor.y - floor(coor.y); return (1 - a) * (1 - b) * image[mad24(j0, elemCntPerRow, i0)] + a * (1 - b) * image[mad24(j0, elemCntPerRow, i1)] + (1 - a) * b * image[mad24(j1, elemCntPerRow, i0)] + a * b * image[mad24(j1, elemCntPerRow, i1)]; } __kernel void lkSparse_C4_D5(__global const float *I, __global const float *J, __global const float2 *prevPts, int prevPtsStep, __global float2 *nextPts, int nextPtsStep, __global uchar *status, __global float *err, const int level, const int rows, const int cols, const int elemCntPerRow, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr) { __local float smem1[BUFFER]; __local float smem2[BUFFER]; __local float smem3[BUFFER]; float2 c_halfWin = (float2)((c_winSize_x - 1) >> 1, (c_winSize_y - 1) >> 1); const int tid = mad24(get_local_id(1), get_local_size(0), get_local_id(0)); float2 prevPt = prevPts[get_group_id(0)] * (1.0f / (1 << level)); if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows) { if (tid == 0 && level == 0) { status[get_group_id(0)] = 0; } return; } prevPt -= c_halfWin; // extract the patch from the first image, compute covariation matrix of derivatives float A11 = 0; float A12 = 0; float A22 = 0; float4 I_patch[1][3]; float4 dIdx_patch[1][3]; float4 dIdy_patch[1][3]; __global float4 *ptrI = (__global float4 *)I; for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i) { for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j) { float x = (prevPt.x + xBase); float y = (prevPt.y + yBase); I_patch[i][j] = readImage2Df_C4(ptrI, x, y, rows, cols, elemCntPerRow); float4 dIdx = 3.0f * readImage2Df_C4(ptrI, x + 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x + 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y + 1, rows, cols, elemCntPerRow) - (3.0f * readImage2Df_C4(ptrI, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x - 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x - 1, y + 1, rows, cols, elemCntPerRow)); float4 dIdy = 3.0f * readImage2Df_C4(ptrI, x - 1, y + 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x, y + 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y + 1, rows, cols, elemCntPerRow) - (3.0f * readImage2Df_C4(ptrI, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x, y - 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y - 1, rows, cols, elemCntPerRow)); dIdx_patch[i][j] = dIdx; dIdy_patch[i][j] = dIdy; A11 += (dIdx * dIdx).x + (dIdx * dIdx).y + (dIdx * dIdx).z; A12 += (dIdx * dIdy).x + (dIdx * dIdy).y + (dIdx * dIdy).z; A22 += (dIdy * dIdy).x + (dIdy * dIdy).y + (dIdy * dIdy).z; } } reduce3(A11, A12, A22, smem1, smem2, smem3, tid); barrier(CLK_LOCAL_MEM_FENCE); A11 = smem1[0]; A12 = smem2[0]; A22 = smem3[0]; float D = A11 * A22 - A12 * A12; //pD[get_group_id(0)] = D; if (D < 1.192092896e-07f) { if (tid == 0 && level == 0) { status[get_group_id(0)] = 0; } return; } D = 1.f / D; A11 *= D; A12 *= D; A22 *= D; float2 nextPt = nextPts[get_group_id(0)]; nextPt = nextPt * 2.0f - c_halfWin; __global float4 *ptrJ = (__global float4 *)J; for (int k = 0; k < c_iters; ++k) { if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows) { if (tid == 0 && level == 0) { status[get_group_id(0)] = 0; } return; } float b1 = 0; float b2 = 0; for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i) { for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j) { float4 diff = (readImage2Df_C4(ptrJ, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]) * 32.0f; b1 += (diff * dIdx_patch[i][j]).x + (diff * dIdx_patch[i][j]).y + (diff * dIdx_patch[i][j]).z; b2 += (diff * dIdy_patch[i][j]).x + (diff * dIdy_patch[i][j]).y + (diff * dIdy_patch[i][j]).z; } } reduce2(b1, b2, smem1, smem2, tid); barrier(CLK_LOCAL_MEM_FENCE); b1 = smem1[0]; b2 = smem2[0]; float2 delta; delta.x = A12 * b2 - A22 * b1; delta.y = A12 * b1 - A11 * b2; nextPt += delta; //if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD) // break; } float errval = 0.0f; if (calcErr) { for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i) { for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j) { float4 diff = readImage2Df_C4(ptrJ, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]; errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z); } } reduce1(errval, smem1, tid); } if (tid == 0) { nextPt += c_halfWin; nextPts[get_group_id(0)] = nextPt; if (calcErr) { err[get_group_id(0)] = smem1[0] / (3 * c_winSize_x * c_winSize_y); } } } int readImage2Di_C1(__global const int *image, float2 coor, int2 size, const int elemCntPerRow) { int i = clamp((int)floor(coor.x), 0, size.x - 1); int j = clamp((int)floor(coor.y), 0, size.y - 1); return image[mad24(j, elemCntPerRow, i)]; } __kernel void lkDense_C1_D0(__global const int *I, __global const int *J, __global float *u, int uStep, __global float *v, int vStep, __global const float *prevU, int prevUStep, __global const float *prevV, int prevVStep, const int rows, const int cols, /*__global float* err, int errStep, int cn,*/ const int elemCntPerRow, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr) { int c_halfWin_x = (c_winSize_x - 1) / 2; int c_halfWin_y = (c_winSize_y - 1) / 2; const int patchWidth = get_local_size(0) + 2 * c_halfWin_x; const int patchHeight = get_local_size(1) + 2 * c_halfWin_y; __local int smem[8192]; __local int *I_patch = smem; __local int *dIdx_patch = I_patch + patchWidth * patchHeight; __local int *dIdy_patch = dIdx_patch + patchWidth * patchHeight; const int xBase = get_group_id(0) * get_local_size(0); const int yBase = get_group_id(1) * get_local_size(1); int2 size = (int2)(cols, rows); for (int i = get_local_id(1); i < patchHeight; i += get_local_size(1)) { for (int j = get_local_id(0); j < patchWidth; j += get_local_size(0)) { float x = xBase - c_halfWin_x + j + 0.5f; float y = yBase - c_halfWin_y + i + 0.5f; I_patch[i * patchWidth + j] = readImage2Di_C1(I, (float2)(x, y), size, elemCntPerRow); // Sharr Deriv dIdx_patch[i * patchWidth + j] = 3 * readImage2Di_C1(I, (float2)(x + 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x + 1, y), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y + 1), size, elemCntPerRow) - (3 * readImage2Di_C1(I, (float2)(x - 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x - 1, y), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x - 1, y + 1), size, elemCntPerRow)); dIdy_patch[i * patchWidth + j] = 3 * readImage2Di_C1(I, (float2)(x - 1, y + 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x, y + 1), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y + 1), size, elemCntPerRow) - (3 * readImage2Di_C1(I, (float2)(x - 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x, y - 1), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y - 1), size, elemCntPerRow)); } } barrier(CLK_LOCAL_MEM_FENCE); // extract the patch from the first image, compute covariation matrix of derivatives const int x = get_global_id(0); const int y = get_global_id(1); if (x >= cols || y >= rows) { return; } int A11i = 0; int A12i = 0; int A22i = 0; for (int i = 0; i < c_winSize_y; ++i) { for (int j = 0; j < c_winSize_x; ++j) { int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)]; int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)]; A11i += dIdx * dIdx; A12i += dIdx * dIdy; A22i += dIdy * dIdy; } } float A11 = A11i; float A12 = A12i; float A22 = A22i; float D = A11 * A22 - A12 * A12; //if (calcErr && GET_MIN_EIGENVALS) // (err + y * errStep)[x] = minEig; if (D < 1.192092896e-07f) { //if (calcErr) // err(y, x) = 3.402823466e+38f; return; } D = 1.f / D; A11 *= D; A12 *= D; A22 *= D; float2 nextPt; nextPt.x = x + prevU[y / 2 * prevUStep / 4 + x / 2] * 2.0f; nextPt.y = y + prevV[y / 2 * prevVStep / 4 + x / 2] * 2.0f; for (int k = 0; k < c_iters; ++k) { if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows) { //if (calcErr) // err(y, x) = 3.402823466e+38f; return; } int b1 = 0; int b2 = 0; for (int i = 0; i < c_winSize_y; ++i) { for (int j = 0; j < c_winSize_x; ++j) { int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j]; int iJ = readImage2Di_C1(J, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f), size, elemCntPerRow); int diff = (iJ - iI) * 32; int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)]; int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)]; b1 += diff * dIdx; b2 += diff * dIdy; } } float2 delta; delta.x = A12 * b2 - A22 * b1; delta.y = A12 * b1 - A11 * b2; nextPt.x += delta.x; nextPt.y += delta.y; if (fabs(delta.x) < 0.01f && fabs(delta.y) < 0.01f) { break; } } u[y * uStep / 4 + x] = nextPt.x - x; v[y * vStep / 4 + x] = nextPt.y - y; if (calcErr) { int errval = 0; for (int i = 0; i < c_winSize_y; ++i) { for (int j = 0; j < c_winSize_x; ++j) { int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j]; int iJ = readImage2Di_C1(J, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f), size, elemCntPerRow); errval += abs(iJ - iI); } } //err[y * errStep / 4 + x] = static_cast(errval) / (c_winSize_x * c_winSize_y); } }