/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Jin Ma jin@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ __kernel void centeredGradientKernel(__global const float* src, int src_col, int src_row, int src_step, __global float* dx, __global float* dy, int dx_step) { int x = get_global_id(0); int y = get_global_id(1); if((x < src_col)&&(y < src_row)) { int src_x1 = (x + 1) < (src_col -1)? (x + 1) : (src_col - 1); int src_x2 = (x - 1) > 0 ? (x -1) : 0; //if(src[y * src_step + src_x1] == src[y * src_step+ src_x2]) //{ // printf("y = %d\n", y); // printf("src_x1 = %d\n", src_x1); // printf("src_x2 = %d\n", src_x2); //} dx[y * dx_step+ x] = 0.5f * (src[y * src_step + src_x1] - src[y * src_step+ src_x2]); int src_y1 = (y+1) < (src_row - 1) ? (y + 1) : (src_row - 1); int src_y2 = (y - 1) > 0 ? (y - 1) : 0; dy[y * dx_step+ x] = 0.5f * (src[src_y1 * src_step + x] - src[src_y2 * src_step+ x]); } } float bicubicCoeff(float x_) { float x = fabs(x_); if (x <= 1.0f) { return x * x * (1.5f * x - 2.5f) + 1.0f; } else if (x < 2.0f) { return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f; } else { return 0.0f; } } __kernel void warpBackwardKernel(__global const float* I0, int I0_step, int I0_col, int I0_row, image2d_t tex_I1, image2d_t tex_I1x, image2d_t tex_I1y, __global const float* u1, int u1_step, __global const float* u2, __global float* I1w, __global float* I1wx, /*int I1wx_step,*/ __global float* I1wy, /*int I1wy_step,*/ __global float* grad, /*int grad_step,*/ __global float* rho, int I1w_step, int u2_step, int u1_offset_x, int u1_offset_y, int u2_offset_x, int u2_offset_y) { const int x = get_global_id(0); const int y = get_global_id(1); if(x < I0_col&&y < I0_row) { //const float u1Val = u1(y, x); const float u1Val = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; //const float u2Val = u2(y, x); const float u2Val = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; const float wx = x + u1Val; const float wy = y + u2Val; const int xmin = ceil(wx - 2.0f); const int xmax = floor(wx + 2.0f); const int ymin = ceil(wy - 2.0f); const int ymax = floor(wy + 2.0f); float sum = 0.0f; float sumx = 0.0f; float sumy = 0.0f; float wsum = 0.0f; sampler_t sampleri = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; for (int cy = ymin; cy <= ymax; ++cy) { for (int cx = xmin; cx <= xmax; ++cx) { const float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); //sum += w * tex2D(tex_I1 , cx, cy); int2 cood = (int2)(cx, cy); sum += w * read_imagef(tex_I1, sampleri, cood).x; //sumx += w * tex2D(tex_I1x, cx, cy); sumx += w * read_imagef(tex_I1x, sampleri, cood).x; //sumy += w * tex2D(tex_I1y, cx, cy); sumy += w * read_imagef(tex_I1y, sampleri, cood).x; wsum += w; } } const float coeff = 1.0f / wsum; const float I1wVal = sum * coeff; const float I1wxVal = sumx * coeff; const float I1wyVal = sumy * coeff; I1w[y * I1w_step + x] = I1wVal; I1wx[y * I1w_step + x] = I1wxVal; I1wy[y * I1w_step + x] = I1wyVal; const float Ix2 = I1wxVal * I1wxVal; const float Iy2 = I1wyVal * I1wyVal; // store the |Grad(I1)|^2 grad[y * I1w_step + x] = Ix2 + Iy2; // compute the constant part of the rho function const float I0Val = I0[y * I0_step + x]; rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; } } float readImage(__global const float *image, const int x, const int y, const int rows, const int cols, const int elemCntPerRow) { int i0 = clamp(x, 0, cols - 1); int j0 = clamp(y, 0, rows - 1); int i1 = clamp(x + 1, 0, cols - 1); int j1 = clamp(y + 1, 0, rows - 1); return image[j0 * elemCntPerRow + i0]; } __kernel void warpBackwardKernelNoImage2d(__global const float* I0, int I0_step, int I0_col, int I0_row, __global const float* tex_I1, __global const float* tex_I1x, __global const float* tex_I1y, __global const float* u1, int u1_step, __global const float* u2, __global float* I1w, __global float* I1wx, /*int I1wx_step,*/ __global float* I1wy, /*int I1wy_step,*/ __global float* grad, /*int grad_step,*/ __global float* rho, int I1w_step, int u2_step, int I1_step, int I1x_step) { const int x = get_global_id(0); const int y = get_global_id(1); if(x < I0_col&&y < I0_row) { //const float u1Val = u1(y, x); const float u1Val = u1[y * u1_step + x]; //const float u2Val = u2(y, x); const float u2Val = u2[y * u2_step + x]; const float wx = x + u1Val; const float wy = y + u2Val; const int xmin = ceil(wx - 2.0f); const int xmax = floor(wx + 2.0f); const int ymin = ceil(wy - 2.0f); const int ymax = floor(wy + 2.0f); float sum = 0.0f; float sumx = 0.0f; float sumy = 0.0f; float wsum = 0.0f; for (int cy = ymin; cy <= ymax; ++cy) { for (int cx = xmin; cx <= xmax; ++cx) { const float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); int2 cood = (int2)(cx, cy); sum += w * readImage(tex_I1, cood.x, cood.y, I0_col, I0_row, I1_step); sumx += w * readImage(tex_I1x, cood.x, cood.y, I0_col, I0_row, I1x_step); sumy += w * readImage(tex_I1y, cood.x, cood.y, I0_col, I0_row, I1x_step); wsum += w; } } const float coeff = 1.0f / wsum; const float I1wVal = sum * coeff; const float I1wxVal = sumx * coeff; const float I1wyVal = sumy * coeff; I1w[y * I1w_step + x] = I1wVal; I1wx[y * I1w_step + x] = I1wxVal; I1wy[y * I1w_step + x] = I1wyVal; const float Ix2 = I1wxVal * I1wxVal; const float Iy2 = I1wyVal * I1wyVal; // store the |Grad(I1)|^2 grad[y * I1w_step + x] = Ix2 + Iy2; // compute the constant part of the rho function const float I0Val = I0[y * I0_step + x]; rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; } } __kernel void estimateDualVariablesKernel(__global const float* u1, int u1_col, int u1_row, int u1_step, __global const float* u2, __global float* p11, int p11_step, __global float* p12, __global float* p21, __global float* p22, const float taut, int u2_step, int u1_offset_x, int u1_offset_y, int u2_offset_x, int u2_offset_y) { //const int x = blockIdx.x * blockDim.x + threadIdx.x; //const int y = blockIdx.y * blockDim.y + threadIdx.y; const int x = get_global_id(0); const int y = get_global_id(1); if(x < u1_col && y < u1_row) { int src_x1 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1); const float u1x = u1[(y + u1_offset_y) * u1_step + src_x1 + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; int src_y1 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1); const float u1y = u1[(src_y1 + u1_offset_y) * u1_step + x + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; int src_x2 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1); const float u2x = u2[(y + u2_offset_y) * u2_step + src_x2 + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; int src_y2 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1); const float u2y = u2[(src_y2 + u2_offset_y) * u2_step + x + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; const float g1 = hypot(u1x, u1y); const float g2 = hypot(u2x, u2y); const float ng1 = 1.0f + taut * g1; const float ng2 = 1.0f + taut * g2; p11[y * p11_step + x] = (p11[y * p11_step + x] + taut * u1x) / ng1; p12[y * p11_step + x] = (p12[y * p11_step + x] + taut * u1y) / ng1; p21[y * p11_step + x] = (p21[y * p11_step + x] + taut * u2x) / ng2; p22[y * p11_step + x] = (p22[y * p11_step + x] + taut * u2y) / ng2; } } float divergence(__global const float* v1, __global const float* v2, int y, int x, int v1_step, int v2_step) { if (x > 0 && y > 0) { const float v1x = v1[y * v1_step + x] - v1[y * v1_step + x - 1]; const float v2y = v2[y * v2_step + x] - v2[(y - 1) * v2_step + x]; return v1x + v2y; } else { if (y > 0) return v1[y * v1_step + 0] + v2[y * v2_step + 0] - v2[(y - 1) * v2_step + 0]; else { if (x > 0) return v1[0 * v1_step + x] - v1[0 * v1_step + x - 1] + v2[0 * v2_step + x]; else return v1[0 * v1_step + 0] + v2[0 * v2_step + 0]; } } } __kernel void estimateUKernel(__global const float* I1wx, int I1wx_col, int I1wx_row, int I1wx_step, __global const float* I1wy, /*int I1wy_step,*/ __global const float* grad, /*int grad_step,*/ __global const float* rho_c, /*int rho_c_step,*/ __global const float* p11, /*int p11_step,*/ __global const float* p12, /*int p12_step,*/ __global const float* p21, /*int p21_step,*/ __global const float* p22, /*int p22_step,*/ __global float* u1, int u1_step, __global float* u2, __global float* error, const float l_t, const float theta, int u2_step, int u1_offset_x, int u1_offset_y, int u2_offset_x, int u2_offset_y) { //const int x = blockIdx.x * blockDim.x + threadIdx.x; //const int y = blockIdx.y * blockDim.y + threadIdx.y; int x = get_global_id(0); int y = get_global_id(1); if(x < I1wx_col && y < I1wx_row) { const float I1wxVal = I1wx[y * I1wx_step + x]; const float I1wyVal = I1wy[y * I1wx_step + x]; const float gradVal = grad[y * I1wx_step + x]; const float u1OldVal = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; const float u2OldVal = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; const float rho = rho_c[y * I1wx_step + x] + (I1wxVal * u1OldVal + I1wyVal * u2OldVal); // estimate the values of the variable (v1, v2) (thresholding operator TH) float d1 = 0.0f; float d2 = 0.0f; if (rho < -l_t * gradVal) { d1 = l_t * I1wxVal; d2 = l_t * I1wyVal; } else if (rho > l_t * gradVal) { d1 = -l_t * I1wxVal; d2 = -l_t * I1wyVal; } else if (gradVal > 1.192092896e-07f) { const float fi = -rho / gradVal; d1 = fi * I1wxVal; d2 = fi * I1wyVal; } const float v1 = u1OldVal + d1; const float v2 = u2OldVal + d2; // compute the divergence of the dual variable (p1, p2) const float div_p1 = divergence(p11, p12, y, x, I1wx_step, I1wx_step); const float div_p2 = divergence(p21, p22, y, x, I1wx_step, I1wx_step); // estimate the values of the optical flow (u1, u2) const float u1NewVal = v1 + theta * div_p1; const float u2NewVal = v2 + theta * div_p2; u1[(y + u1_offset_y) * u1_step + x + u1_offset_x] = u1NewVal; u2[(y + u2_offset_y) * u2_step + x + u2_offset_x] = u2NewVal; const float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal); const float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal); error[y * I1wx_step + x] = n1 + n2; } }