/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #include "test_precomp.hpp" using namespace cv; using namespace std; using namespace gpu; class CV_GpuImageProcTest : public cvtest::BaseTest { public: virtual ~CV_GpuImageProcTest() {} protected: void run(int); int test8UC1 (const Mat& img); int test8UC4 (const Mat& img); int test32SC1(const Mat& img); int test32FC1(const Mat& img); virtual int test(const Mat& img) = 0; int CheckNorm(const Mat& m1, const Mat& m2); // Checks whether two images are similar enough using normalized // cross-correlation as an error measure int CheckSimilarity(const Mat& m1, const Mat& m2, float max_err=1e-3f); }; int CV_GpuImageProcTest::test8UC1(const Mat& img) { cv::Mat img_C1; cvtColor(img, img_C1, CV_BGR2GRAY); return test(img_C1); } int CV_GpuImageProcTest::test8UC4(const Mat& img) { cv::Mat img_C4; cvtColor(img, img_C4, CV_BGR2BGRA); return test(img_C4); } int CV_GpuImageProcTest::test32SC1(const Mat& img) { cv::Mat img_C1; cvtColor(img, img_C1, CV_BGR2GRAY); img_C1.convertTo(img_C1, CV_32S); return test(img_C1); } int CV_GpuImageProcTest::test32FC1(const Mat& img) { cv::Mat temp, img_C1; img.convertTo(temp, CV_32F, 1.f / 255.f); cvtColor(temp, img_C1, CV_BGR2GRAY); return test(img_C1); } int CV_GpuImageProcTest::CheckNorm(const Mat& m1, const Mat& m2) { double ret = norm(m1, m2, NORM_INF); if (ret < std::numeric_limits::epsilon()) { return cvtest::TS::OK; } else { ts->printf(cvtest::TS::LOG, "Norm: %f\n", ret); return cvtest::TS::FAIL_GENERIC; } } int CV_GpuImageProcTest::CheckSimilarity(const Mat& m1, const Mat& m2, float max_err) { Mat diff; cv::matchTemplate(m1, m2, diff, CV_TM_CCORR_NORMED); float err = abs(diff.at(0, 0) - 1.f); if (err > max_err) return cvtest::TS::FAIL_INVALID_OUTPUT; return cvtest::TS::OK; } void CV_GpuImageProcTest::run( int ) { //load image cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png"); if (img.empty()) { ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } int testResult = cvtest::TS::OK; //run tests ts->printf(cvtest::TS::LOG, "\n========Start test 8UC1========\n"); if (test8UC1(img) == cvtest::TS::OK) ts->printf(cvtest::TS::LOG, "SUCCESS\n"); else { ts->printf(cvtest::TS::LOG, "FAIL\n"); testResult = cvtest::TS::FAIL_GENERIC; } ts->printf(cvtest::TS::LOG, "\n========Start test 8UC4========\n"); if (test8UC4(img) == cvtest::TS::OK) ts->printf(cvtest::TS::LOG, "SUCCESS\n"); else { ts->printf(cvtest::TS::LOG, "FAIL\n"); testResult = cvtest::TS::FAIL_GENERIC; } ts->printf(cvtest::TS::LOG, "\n========Start test 32SC1========\n"); if (test32SC1(img) == cvtest::TS::OK) ts->printf(cvtest::TS::LOG, "SUCCESS\n"); else { ts->printf(cvtest::TS::LOG, "FAIL\n"); testResult = cvtest::TS::FAIL_GENERIC; } ts->printf(cvtest::TS::LOG, "\n========Start test 32FC1========\n"); if (test32FC1(img) == cvtest::TS::OK) ts->printf(cvtest::TS::LOG, "SUCCESS\n"); else { ts->printf(cvtest::TS::LOG, "FAIL\n"); testResult = cvtest::TS::FAIL_GENERIC; } ts->set_failed_test_info(testResult); } //////////////////////////////////////////////////////////////////////////////// // threshold struct CV_GpuImageThresholdTest : public CV_GpuImageProcTest { public: CV_GpuImageThresholdTest() {} int test(const Mat& img) { if (img.type() != CV_8UC1 && img.type() != CV_32FC1) { ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); return cvtest::TS::OK; } const double maxVal = img.type() == CV_8UC1 ? 255 : 1.0; cv::RNG& rng = ts->get_rng(); int res = cvtest::TS::OK; for (int type = THRESH_BINARY; type <= THRESH_TOZERO_INV; ++type) { const double thresh = rng.uniform(0.0, maxVal); cv::Mat cpuRes; cv::threshold(img, cpuRes, thresh, maxVal, type); GpuMat gpu1(img); GpuMat gpuRes; cv::gpu::threshold(gpu1, gpuRes, thresh, maxVal, type); if (CheckNorm(cpuRes, gpuRes) != cvtest::TS::OK) res = cvtest::TS::FAIL_GENERIC; } return res; } }; //////////////////////////////////////////////////////////////////////////////// // resize struct CV_GpuNppImageResizeTest : public CV_GpuImageProcTest { CV_GpuNppImageResizeTest() {} int test(const Mat& img) { if (img.type() != CV_8UC1 && img.type() != CV_8UC4) { ts->printf(cvtest::TS::LOG, "Unsupported type\n"); return cvtest::TS::OK; } int interpolations[] = {INTER_NEAREST, INTER_LINEAR, /*INTER_CUBIC,*/ /*INTER_LANCZOS4*/}; const char* interpolations_str[] = {"INTER_NEAREST", "INTER_LINEAR", /*"INTER_CUBIC",*/ /*"INTER_LANCZOS4"*/}; int interpolations_num = sizeof(interpolations) / sizeof(int); int test_res = cvtest::TS::OK; for (int i = 0; i < interpolations_num; ++i) { ts->printf(cvtest::TS::LOG, "Interpolation: %s\n", interpolations_str[i]); Mat cpu_res1, cpu_res2; cv::resize(img, cpu_res1, Size(), 2.0, 2.0, interpolations[i]); cv::resize(cpu_res1, cpu_res2, Size(), 0.5, 0.5, interpolations[i]); GpuMat gpu1(img), gpu_res1, gpu_res2; cv::gpu::resize(gpu1, gpu_res1, Size(), 2.0, 2.0, interpolations[i]); cv::gpu::resize(gpu_res1, gpu_res2, Size(), 0.5, 0.5, interpolations[i]); if (CheckSimilarity(cpu_res2, gpu_res2) != cvtest::TS::OK) test_res = cvtest::TS::FAIL_GENERIC; } return test_res; } }; //////////////////////////////////////////////////////////////////////////////// // copyMakeBorder struct CV_GpuNppImageCopyMakeBorderTest : public CV_GpuImageProcTest { CV_GpuNppImageCopyMakeBorderTest() {} int test(const Mat& img) { if (img.type() != CV_8UC1 && img.type() != CV_8UC4 && img.type() != CV_32SC1) { ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); return cvtest::TS::OK; } cv::RNG& rng = ts->get_rng(); int top = rng.uniform(1, 10); int botton = rng.uniform(1, 10); int left = rng.uniform(1, 10); int right = rng.uniform(1, 10); cv::Scalar val(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)); Mat cpudst; cv::copyMakeBorder(img, cpudst, top, botton, left, right, BORDER_CONSTANT, val); GpuMat gpu1(img); GpuMat gpudst; cv::gpu::copyMakeBorder(gpu1, gpudst, top, botton, left, right, val); return CheckNorm(cpudst, gpudst); } }; //////////////////////////////////////////////////////////////////////////////// // warpAffine struct CV_GpuNppImageWarpAffineTest : public CV_GpuImageProcTest { CV_GpuNppImageWarpAffineTest() {} int test(const Mat& img) { if (img.type() == CV_32SC1) { ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); return cvtest::TS::OK; } static double reflect[2][3] = { {-1, 0, 0}, { 0, -1, 0} }; reflect[0][2] = img.cols; reflect[1][2] = img.rows; Mat M(2, 3, CV_64F, (void*)reflect); int flags[] = {INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_NEAREST | WARP_INVERSE_MAP, INTER_LINEAR | WARP_INVERSE_MAP, INTER_CUBIC | WARP_INVERSE_MAP}; const char* flags_str[] = {"INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_NEAREST | WARP_INVERSE_MAP", "INTER_LINEAR | WARP_INVERSE_MAP", "INTER_CUBIC | WARP_INVERSE_MAP"}; int flags_num = sizeof(flags) / sizeof(int); int test_res = cvtest::TS::OK; for (int i = 0; i < flags_num; ++i) { ts->printf(cvtest::TS::LOG, "\nFlags: %s\n", flags_str[i]); Mat cpudst; cv::warpAffine(img, cpudst, M, img.size(), flags[i]); GpuMat gpu1(img); GpuMat gpudst; cv::gpu::warpAffine(gpu1, gpudst, M, gpu1.size(), flags[i]); // Check inner parts (ignoring 1 pixel width border) if (CheckSimilarity(cpudst.rowRange(1, cpudst.rows - 1).colRange(1, cpudst.cols - 1), gpudst.rowRange(1, gpudst.rows - 1).colRange(1, gpudst.cols - 1)) != cvtest::TS::OK) test_res = cvtest::TS::FAIL_GENERIC; } return test_res; } }; //////////////////////////////////////////////////////////////////////////////// // warpPerspective struct CV_GpuNppImageWarpPerspectiveTest : public CV_GpuImageProcTest { CV_GpuNppImageWarpPerspectiveTest() {} int test(const Mat& img) { if (img.type() == CV_32SC1) { ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); return cvtest::TS::OK; } static double reflect[3][3] = { { -1, 0, 0}, { 0, -1, 0}, { 0, 0, 1 }}; reflect[0][2] = img.cols; reflect[1][2] = img.rows; Mat M(3, 3, CV_64F, (void*)reflect); int flags[] = {INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_NEAREST | WARP_INVERSE_MAP, INTER_LINEAR | WARP_INVERSE_MAP, INTER_CUBIC | WARP_INVERSE_MAP}; const char* flags_str[] = {"INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_NEAREST | WARP_INVERSE_MAP", "INTER_LINEAR | WARP_INVERSE_MAP", "INTER_CUBIC | WARP_INVERSE_MAP"}; int flags_num = sizeof(flags) / sizeof(int); int test_res = cvtest::TS::OK; for (int i = 0; i < flags_num; ++i) { ts->printf(cvtest::TS::LOG, "\nFlags: %s\n", flags_str[i]); Mat cpudst; cv::warpPerspective(img, cpudst, M, img.size(), flags[i]); GpuMat gpu1(img); GpuMat gpudst; cv::gpu::warpPerspective(gpu1, gpudst, M, gpu1.size(), flags[i]); // Check inner parts (ignoring 1 pixel width border) if (CheckSimilarity(cpudst.rowRange(1, cpudst.rows - 1).colRange(1, cpudst.cols - 1), gpudst.rowRange(1, gpudst.rows - 1).colRange(1, gpudst.cols - 1)) != cvtest::TS::OK) test_res = cvtest::TS::FAIL_GENERIC; } return test_res; } }; //////////////////////////////////////////////////////////////////////////////// // integral struct CV_GpuNppImageIntegralTest : public CV_GpuImageProcTest { CV_GpuNppImageIntegralTest() {} int test(const Mat& img) { if (img.type() != CV_8UC1) { ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); return cvtest::TS::OK; } Mat cpusum; cv::integral(img, cpusum, CV_32S); GpuMat gpu1(img); GpuMat gpusum; cv::gpu::integral(gpu1, gpusum); return CheckNorm(cpusum, gpusum) == cvtest::TS::OK ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC; } }; //////////////////////////////////////////////////////////////////////////////// // Canny //struct CV_GpuNppImageCannyTest : public CV_GpuImageProcTest //{ // CV_GpuNppImageCannyTest() : CV_GpuImageProcTest( "GPU-NppImageCanny", "Canny" ) {} // // int test(const Mat& img) // { // if (img.type() != CV_8UC1) // { // ts->printf(cvtest::TS::LOG, "\nUnsupported type\n"); // return cvtest::TS::OK; // } // // const double threshold1 = 1.0, threshold2 = 10.0; // // Mat cpudst; // cv::Canny(img, cpudst, threshold1, threshold2); // // GpuMat gpu1(img); // GpuMat gpudst; // cv::gpu::Canny(gpu1, gpudst, threshold1, threshold2); // // return CheckNorm(cpudst, gpudst); // } //}; //////////////////////////////////////////////////////////////////////////////// // cvtColor class CV_GpuCvtColorTest : public cvtest::BaseTest { public: CV_GpuCvtColorTest() {} ~CV_GpuCvtColorTest() {}; protected: void run(int); int CheckNorm(const Mat& m1, const Mat& m2); }; int CV_GpuCvtColorTest::CheckNorm(const Mat& m1, const Mat& m2) { double ret = norm(m1, m2, NORM_INF); if (ret <= 3) { return cvtest::TS::OK; } else { ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret); return cvtest::TS::FAIL_GENERIC; } } void CV_GpuCvtColorTest::run( int ) { cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png"); if (img.empty()) { ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } int testResult = cvtest::TS::OK; cv::Mat cpuRes; cv::gpu::GpuMat gpuImg(img), gpuRes; int codes[] = { CV_BGR2RGB, CV_RGB2BGRA, CV_BGRA2RGB, CV_RGB2BGR555, CV_BGR5552BGR, CV_BGR2BGR565, CV_BGR5652RGB, CV_RGB2YCrCb, CV_YCrCb2BGR, CV_BGR2YUV, CV_YUV2RGB, CV_RGB2XYZ, CV_XYZ2BGR, CV_BGR2XYZ, CV_XYZ2RGB, CV_RGB2HSV, CV_HSV2BGR, CV_BGR2HSV_FULL, CV_HSV2RGB_FULL, CV_RGB2HLS, CV_HLS2BGR, CV_BGR2HLS_FULL, CV_HLS2RGB_FULL, CV_RGB2GRAY, CV_GRAY2BGRA, CV_BGRA2GRAY, CV_GRAY2BGR555, CV_BGR5552GRAY, CV_GRAY2BGR565, CV_BGR5652GRAY}; const char* codes_str[] = { "CV_BGR2RGB", "CV_RGB2BGRA", "CV_BGRA2RGB", "CV_RGB2BGR555", "CV_BGR5552BGR", "CV_BGR2BGR565", "CV_BGR5652RGB", "CV_RGB2YCrCb", "CV_YCrCb2BGR", "CV_BGR2YUV", "CV_YUV2RGB", "CV_RGB2XYZ", "CV_XYZ2BGR", "CV_BGR2XYZ", "CV_XYZ2RGB", "CV_RGB2HSV", "CV_HSV2RGB", "CV_BGR2HSV_FULL", "CV_HSV2RGB_FULL", "CV_RGB2HLS", "CV_HLS2RGB", "CV_BGR2HLS_FULL", "CV_HLS2RGB_FULL", "CV_RGB2GRAY", "CV_GRAY2BGRA", "CV_BGRA2GRAY", "CV_GRAY2BGR555", "CV_BGR5552GRAY", "CV_GRAY2BGR565", "CV_BGR5652GRAY"}; int codes_num = sizeof(codes) / sizeof(int); for (int i = 0; i < codes_num; ++i) { ts->printf(cvtest::TS::LOG, "\n%s\n", codes_str[i]); cv::cvtColor(img, cpuRes, codes[i]); cv::gpu::cvtColor(gpuImg, gpuRes, codes[i]); if (CheckNorm(cpuRes, gpuRes) == cvtest::TS::OK) ts->printf(cvtest::TS::LOG, "\nSUCCESS\n"); else { ts->printf(cvtest::TS::LOG, "\nFAIL\n"); testResult = cvtest::TS::FAIL_GENERIC; } img = cpuRes; gpuImg = gpuRes; } ts->set_failed_test_info(testResult); } //////////////////////////////////////////////////////////////////////////////// // Histograms class CV_GpuHistogramsTest : public cvtest::BaseTest { public: CV_GpuHistogramsTest() {} ~CV_GpuHistogramsTest() {}; protected: void run(int); int CheckNorm(const Mat& m1, const Mat& m2) { double ret = norm(m1, m2, NORM_INF); if (ret < std::numeric_limits::epsilon()) { return cvtest::TS::OK; } else { ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret); return cvtest::TS::FAIL_GENERIC; } } }; void CV_GpuHistogramsTest::run( int ) { //load image cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "stereobp/aloe-L.png"); if (img.empty()) { ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } Mat hsv; cv::cvtColor(img, hsv, CV_BGR2HSV); int hbins = 30; int histSize[] = {hbins}; float hranges[] = {0, 180}; const float* ranges[] = {hranges}; MatND hist; int channels[] = {0}; calcHist(&hsv, 1, channels, Mat(), hist, 1, histSize, ranges); GpuMat gpuHsv(hsv); std::vector srcs; cv::gpu::split(gpuHsv, srcs); GpuMat gpuHist; histEven(srcs[0], gpuHist, hbins, (int)hranges[0], (int)hranges[1]); Mat cpuHist = hist; cpuHist = cpuHist.t(); cpuHist.convertTo(cpuHist, CV_32S); ts->set_failed_test_info(CheckNorm(cpuHist, gpuHist)); } //////////////////////////////////////////////////////////////////////// // Corner Harris feature detector struct CV_GpuCornerHarrisTest: cvtest::BaseTest { CV_GpuCornerHarrisTest() {} void run(int) { for (int i = 0; i < 5; ++i) { int rows = 25 + rand() % 300, cols = 25 + rand() % 300; if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return; if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, -1)) return; if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return; if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, -1)) return; } } bool compareToCpuTest(int rows, int cols, int depth, int blockSize, int apertureSize) { RNG rng; cv::Mat src(rows, cols, depth); if (depth == CV_32F) rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(1)); else if (depth == CV_8U) rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(256)); double k = 0.1; cv::Mat dst_gold; cv::gpu::GpuMat dst; cv::Mat dsth; int borderType; borderType = BORDER_REFLECT101; cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType); cv::gpu::cornerHarris(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, k, borderType); dsth = dst; for (int i = 0; i < dst.rows; ++i) { for (int j = 0; j < dst.cols; ++j) { float a = dst_gold.at(i, j); float b = dsth.at(i, j); if (fabs(a - b) > 1e-3f) { ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d\n", i, j, a, b, apertureSize); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; }; } } borderType = BORDER_REPLICATE; cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType); cv::gpu::cornerHarris(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, k, borderType); dsth = dst; for (int i = 0; i < dst.rows; ++i) { for (int j = 0; j < dst.cols; ++j) { float a = dst_gold.at(i, j); float b = dsth.at(i, j); if (fabs(a - b) > 1e-3f) { ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d\n", i, j, a, b, apertureSize); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; }; } } return true; } }; //////////////////////////////////////////////////////////////////////// // Corner Min Eigen Val struct CV_GpuCornerMinEigenValTest: cvtest::BaseTest { CV_GpuCornerMinEigenValTest() {} void run(int) { for (int i = 0; i < 3; ++i) { int rows = 25 + rand() % 300, cols = 25 + rand() % 300; if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, -1)) return; if (!compareToCpuTest(rows, cols, CV_32F, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return; if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, -1)) return; if (!compareToCpuTest(rows, cols, CV_8U, 1 + rand() % 5, 1 + 2 * (rand() % 4))) return; } } bool compareToCpuTest(int rows, int cols, int depth, int blockSize, int apertureSize) { RNG rng; cv::Mat src(rows, cols, depth); if (depth == CV_32F) rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(1)); else if (depth == CV_8U) rng.fill(src, RNG::UNIFORM, cv::Scalar(0), cv::Scalar(256)); cv::Mat dst_gold; cv::gpu::GpuMat dst; cv::Mat dsth; int borderType; borderType = BORDER_REFLECT101; cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType); cv::gpu::cornerMinEigenVal(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, borderType); dsth = dst; for (int i = 0; i < dst.rows; ++i) { for (int j = 0; j < dst.cols; ++j) { float a = dst_gold.at(i, j); float b = dsth.at(i, j); if (fabs(a - b) > 1e-2f) { ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d %d\n", i, j, a, b, apertureSize, blockSize); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; }; } } borderType = BORDER_REPLICATE; cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType); cv::gpu::cornerMinEigenVal(cv::gpu::GpuMat(src), dst, blockSize, apertureSize, borderType); dsth = dst; for (int i = 0; i < dst.rows; ++i) { for (int j = 0; j < dst.cols; ++j) { float a = dst_gold.at(i, j); float b = dsth.at(i, j); if (fabs(a - b) > 1e-2f) { ts->printf(cvtest::TS::CONSOLE, "%d %d %f %f %d %d\n", i, j, a, b, apertureSize, blockSize); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; }; } } return true; } }; struct CV_GpuColumnSumTest: cvtest::BaseTest { CV_GpuColumnSumTest() {} void run(int) { int cols = 375; int rows = 1072; Mat src(rows, cols, CV_32F); RNG rng(1); rng.fill(src, RNG::UNIFORM, Scalar(0), Scalar(1)); GpuMat d_dst; columnSum(GpuMat(src), d_dst); Mat dst = d_dst; for (int j = 0; j < src.cols; ++j) { float a = src.at(0, j); float b = dst.at(0, j); if (fabs(a - b) > 0.5f) { ts->printf(cvtest::TS::CONSOLE, "big diff at %d %d: %f %f\n", 0, j, a, b); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } } for (int i = 1; i < src.rows; ++i) { for (int j = 0; j < src.cols; ++j) { float a = src.at(i, j) += src.at(i - 1, j); float b = dst.at(i, j); if (fabs(a - b) > 0.5f) { ts->printf(cvtest::TS::CONSOLE, "big diff at %d %d: %f %f\n", i, j, a, b); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } } } } }; struct CV_GpuNormTest : cvtest::BaseTest { CV_GpuNormTest() {} void run(int) { RNG rng(0); int rows = rng.uniform(1, 500); int cols = rng.uniform(1, 500); for (int cn = 1; cn <= 4; ++cn) { test(NORM_L1, rows, cols, CV_8U, cn, Scalar::all(0), Scalar::all(10)); test(NORM_L1, rows, cols, CV_8S, cn, Scalar::all(-10), Scalar::all(10)); test(NORM_L1, rows, cols, CV_16U, cn, Scalar::all(0), Scalar::all(10)); test(NORM_L1, rows, cols, CV_16S, cn, Scalar::all(-10), Scalar::all(10)); test(NORM_L1, rows, cols, CV_32S, cn, Scalar::all(-10), Scalar::all(10)); test(NORM_L1, rows, cols, CV_32F, cn, Scalar::all(0), Scalar::all(1)); test(NORM_L2, rows, cols, CV_8U, cn, Scalar::all(0), Scalar::all(10)); test(NORM_L2, rows, cols, CV_8S, cn, Scalar::all(-10), Scalar::all(10)); test(NORM_L2, rows, cols, CV_16U, cn, Scalar::all(0), Scalar::all(10)); test(NORM_L2, rows, cols, CV_16S, cn, Scalar::all(-10), Scalar::all(10)); test(NORM_L2, rows, cols, CV_32S, cn, Scalar::all(-10), Scalar::all(10)); test(NORM_L2, rows, cols, CV_32F, cn, Scalar::all(0), Scalar::all(1)); test(NORM_INF, rows, cols, CV_8U, cn, Scalar::all(0), Scalar::all(10)); test(NORM_INF, rows, cols, CV_8S, cn, Scalar::all(-10), Scalar::all(10)); test(NORM_INF, rows, cols, CV_16U, cn, Scalar::all(0), Scalar::all(10)); test(NORM_INF, rows, cols, CV_16S, cn, Scalar::all(-10), Scalar::all(10)); test(NORM_INF, rows, cols, CV_32S, cn, Scalar::all(-10), Scalar::all(10)); test(NORM_INF, rows, cols, CV_32F, cn, Scalar::all(0), Scalar::all(1)); } } void gen(Mat& mat, int rows, int cols, int type, Scalar low, Scalar high) { mat.create(rows, cols, type); RNG rng(0); rng.fill(mat, RNG::UNIFORM, low, high); } void test(int norm_type, int rows, int cols, int depth, int cn, Scalar low, Scalar high) { int type = CV_MAKE_TYPE(depth, cn); Mat src; gen(src, rows, cols, type, low, high); double gold = norm(src, norm_type); double mine = norm(GpuMat(src), norm_type); if (abs(gold - mine) > 1e-3) { ts->printf(cvtest::TS::CONSOLE, "failed test: gold=%f, mine=%f, norm_type=%d, rows=%d, " "cols=%d, depth=%d, cn=%d\n", gold, mine, norm_type, rows, cols, depth, cn); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); } } }; //////////////////////////////////////////////////////////////////////////////// // reprojectImageTo3D class CV_GpuReprojectImageTo3DTest : public cvtest::BaseTest { public: CV_GpuReprojectImageTo3DTest() {} protected: void run(int) { Mat disp(320, 240, CV_8UC1); RNG& rng = ts->get_rng(); rng.fill(disp, RNG::UNIFORM, Scalar(5), Scalar(30)); Mat Q(4, 4, CV_32FC1); rng.fill(Q, RNG::UNIFORM, Scalar(0.1), Scalar(1)); Mat cpures; GpuMat gpures; reprojectImageTo3D(disp, cpures, Q, false); reprojectImageTo3D(GpuMat(disp), gpures, Q); Mat temp = gpures; for (int y = 0; y < cpures.rows; ++y) { const Vec3f* cpu_row = cpures.ptr(y); const Vec4f* gpu_row = temp.ptr(y); for (int x = 0; x < cpures.cols; ++x) { Vec3f a = cpu_row[x]; Vec4f b = gpu_row[x]; if (fabs(a[0] - b[0]) > 1e-5 || fabs(a[1] - b[1]) > 1e-5 || fabs(a[2] - b[2]) > 1e-5) { ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } } } } }; TEST(threshold, accuracy) { CV_GpuImageThresholdTest test; test.safe_run(); } TEST(resize, accuracy) { CV_GpuNppImageResizeTest test; test.safe_run(); } TEST(copyMakeBorder, accuracy) { CV_GpuNppImageCopyMakeBorderTest test; test.safe_run(); } TEST(warpAffine, accuracy) { CV_GpuNppImageWarpAffineTest test; test.safe_run(); } TEST(warpPerspective, accuracy) { CV_GpuNppImageWarpPerspectiveTest test; test.safe_run(); } TEST(integral, accuracy) { CV_GpuNppImageIntegralTest test; test.safe_run(); } TEST(cvtColor, accuracy) { CV_GpuCvtColorTest test; test.safe_run(); } TEST(histograms, accuracy) { CV_GpuHistogramsTest test; test.safe_run(); } TEST(cornerHearris, accuracy) { CV_GpuCornerHarrisTest test; test.safe_run(); } TEST(minEigen, accuracy) { CV_GpuCornerMinEigenValTest test; test.safe_run(); } TEST(columnSum, accuracy) { CV_GpuColumnSumTest test; test.safe_run(); } TEST(norm, accuracy) { CV_GpuNormTest test; test.safe_run(); } TEST(reprojectImageTo3D, accuracy) { CV_GpuReprojectImageTo3DTest test; test.safe_run(); } TEST(downsample, accuracy_on_8U) { RNG& rng = cvtest::TS::ptr()->get_rng(); Size size(200 + cvtest::randInt(rng) % 1000, 200 + cvtest::randInt(rng) % 1000); Mat src = cvtest::randomMat(rng, size, CV_8U, 0, 255, false); for (int k = 2; k <= 5; ++k) { GpuMat d_dst; downsample(GpuMat(src), d_dst, k); Size dst_gold_size((src.cols + k - 1) / k, (src.rows + k - 1) / k); ASSERT_EQ(dst_gold_size.width, d_dst.cols) << "rows=" << size.height << ", cols=" << size.width << ", k=" << k; ASSERT_EQ(dst_gold_size.height, d_dst.rows) << "rows=" << size.height << ", cols=" << size.width << ", k=" << k; Mat dst = d_dst; for (int y = 0; y < dst.rows; ++y) for (int x = 0; x < dst.cols; ++x) ASSERT_EQ(src.at(y * k, x * k), dst.at(y, x)) << "rows=" << size.height << ", cols=" << size.width << ", k=" << k; } } TEST(downsample, accuracy_on_32F) { RNG& rng = cvtest::TS::ptr()->get_rng(); Size size(200 + cvtest::randInt(rng) % 1000, 200 + cvtest::randInt(rng) % 1000); Mat src = cvtest::randomMat(rng, size, CV_32F, 0, 1, false); for (int k = 2; k <= 5; ++k) { GpuMat d_dst; downsample(GpuMat(src), d_dst, k); Size dst_gold_size((src.cols + k - 1) / k, (src.rows + k - 1) / k); ASSERT_EQ(dst_gold_size.width, d_dst.cols) << "rows=" << size.height << ", cols=" << size.width << ", k=" << k; ASSERT_EQ(dst_gold_size.height, d_dst.rows) << "rows=" << size.height << ", cols=" << size.width << ", k=" << k; Mat dst = d_dst; for (int y = 0; y < dst.rows; ++y) for (int x = 0; x < dst.cols; ++x) ASSERT_FLOAT_EQ(src.at(y * k, x * k), dst.at(y, x)) << "rows=" << size.height << ", cols=" << size.width << ", k=" << k; } }