/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Zhang Ying, zhangying913@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifdef DOUBLE_SUPPORT #ifdef cl_amd_fp64 #pragma OPENCL EXTENSION cl_amd_fp64:enable #elif defined (cl_khr_fp64) #pragma OPENCL EXTENSION cl_khr_fp64:enable #endif #define CT double #else #define CT float #endif #define INTER_BITS 5 #define INTER_TAB_SIZE (1 << INTER_BITS) #define INTER_SCALE 1.f / INTER_TAB_SIZE #define AB_BITS max(10, (int)INTER_BITS) #define AB_SCALE (1 << AB_BITS) #define INTER_REMAP_COEF_BITS 15 #define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS) #define noconvert #ifndef ST #define ST T #endif #if cn != 3 #define loadpix(addr) *(__global const T*)(addr) #define storepix(val, addr) *(__global T*)(addr) = val #define scalar scalar_ #define pixsize (int)sizeof(T) #else #define loadpix(addr) vload3(0, (__global const T1*)(addr)) #define storepix(val, addr) vstore3(val, 0, (__global T1*)(addr)) #ifdef INTER_NEAREST #define scalar (T)(scalar_.x, scalar_.y, scalar_.z) #else #define scalar (WT)(scalar_.x, scalar_.y, scalar_.z) #endif #define pixsize ((int)sizeof(T1)*3) #endif #ifdef INTER_NEAREST __kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __constant CT * M, ST scalar_) { int dx = get_global_id(0); int dy = get_global_id(1); if (dx < dst_cols && dy < dst_rows) { CT X0 = M[0] * dx + M[1] * dy + M[2]; CT Y0 = M[3] * dx + M[4] * dy + M[5]; CT W = M[6] * dx + M[7] * dy + M[8]; W = W != 0.0f ? 1.f / W : 0.0f; short sx = convert_short_sat_rte(X0*W); short sy = convert_short_sat_rte(Y0*W); int dst_index = mad24(dy, dst_step, dx * pixsize + dst_offset); if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) { int src_index = mad24(sy, src_step, sx * pixsize + src_offset); storepix(loadpix(srcptr + src_index), dstptr + dst_index); } else storepix(scalar, dstptr + dst_index); } } #elif defined INTER_LINEAR __kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __constant CT * M, ST scalar_) { int dx = get_global_id(0); int dy = get_global_id(1); if (dx < dst_cols && dy < dst_rows) { CT X0 = M[0] * dx + M[1] * dy + M[2]; CT Y0 = M[3] * dx + M[4] * dy + M[5]; CT W = M[6] * dx + M[7] * dy + M[8]; W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f; int X = rint(X0 * W), Y = rint(Y0 * W); short sx = convert_short_sat(X >> INTER_BITS); short sy = convert_short_sat(Y >> INTER_BITS); short ay = (short)(Y & (INTER_TAB_SIZE - 1)); short ax = (short)(X & (INTER_TAB_SIZE - 1)); WT v0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) ? convertToWT(loadpix(srcptr + mad24(sy, src_step, src_offset + sx * pixsize))) : scalar; WT v1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows) ? convertToWT(loadpix(srcptr + mad24(sy, src_step, src_offset + (sx+1) * pixsize))) : scalar; WT v2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows) ? convertToWT(loadpix(srcptr + mad24(sy+1, src_step, src_offset + sx * pixsize))) : scalar; WT v3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows) ? convertToWT(loadpix(srcptr + mad24(sy+1, src_step, src_offset + (sx+1) * pixsize))) : scalar; float taby = 1.f/INTER_TAB_SIZE*ay; float tabx = 1.f/INTER_TAB_SIZE*ax; int dst_index = mad24(dy, dst_step, dst_offset + dx * pixsize); #if depth <= 4 int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE ); int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE ); WT val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3; storepix(convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS), dstptr + dst_index); #else float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby; WT val = v0 * tabx2 * taby2 + v1 * tabx * taby2 + v2 * tabx2 * taby + v3 * tabx * taby; storepix(convertToT(val), dstptr + dst_index); #endif } } #elif defined INTER_CUBIC inline void interpolateCubic( float x, float* coeffs ) { const float A = -0.75f; coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A; coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f; coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f; coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2]; } __kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __constant CT * M, ST scalar_) { int dx = get_global_id(0); int dy = get_global_id(1); if (dx < dst_cols && dy < dst_rows) { CT X0 = M[0] * dx + M[1] * dy + M[2]; CT Y0 = M[3] * dx + M[4] * dy + M[5]; CT W = M[6] * dx + M[7] * dy + M[8]; W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f; int X = rint(X0 * W), Y = rint(Y0 * W); short sx = convert_short_sat(X >> INTER_BITS) - 1; short sy = convert_short_sat(Y >> INTER_BITS) - 1; short ay = (short)(Y & (INTER_TAB_SIZE-1)); short ax = (short)(X & (INTER_TAB_SIZE-1)); WT v[16]; #pragma unroll for (int y = 0; y < 4; y++) #pragma unroll for (int x = 0; x < 4; x++) v[mad24(y, 4, x)] = (sx+x >= 0 && sx+x < src_cols && sy+y >= 0 && sy+y < src_rows) ? convertToWT(loadpix(srcptr + mad24(sy+y, src_step, src_offset + (sx+x) * pixsize))) : scalar; float tab1y[4], tab1x[4]; float ayy = INTER_SCALE * ay; float axx = INTER_SCALE * ax; interpolateCubic(ayy, tab1y); interpolateCubic(axx, tab1x); int dst_index = mad24(dy, dst_step, dst_offset + dx * pixsize); WT sum = (WT)(0); #if depth <= 4 int itab[16]; #pragma unroll for (int i = 0; i < 16; i++) itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE); #pragma unroll for (int i = 0; i < 16; i++) sum += v[i] * itab[i]; storepix(convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ), dstptr + dst_index); #else #pragma unroll for (int i = 0; i < 16; i++) sum += v[i] * tab1y[(i>>2)] * tab1x[(i&3)]; storepix(convertToT( sum ), dstptr + dst_index); #endif } } #endif