/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include /* Valery Mosyagin */ //#define TRACKLEVMAR typedef void (*pointer_LMJac)( const CvMat* src, CvMat* dst ); typedef void (*pointer_LMFunc)( const CvMat* src, CvMat* dst ); #if 0 /* Optimization using Levenberg-Marquardt */ void cvLevenbergMarquardtOptimization(pointer_LMJac JacobianFunction, pointer_LMFunc function, /*pointer_Err error_function,*/ CvMat *X0,CvMat *observRes,CvMat *resultX, int maxIter,double epsilon) { /* This is not sparse method */ /* Make optimization using */ /* func - function to compute */ /* uses function to compute jacobian */ /* Allocate memory */ CvMat *vectX = 0; CvMat *vectNewX = 0; CvMat *resFunc = 0; CvMat *resNewFunc = 0; CvMat *error = 0; CvMat *errorNew = 0; CvMat *Jac = 0; CvMat *delta = 0; CvMat *matrJtJ = 0; CvMat *matrJtJN = 0; CvMat *matrJt = 0; CvMat *vectB = 0; CV_FUNCNAME( "cvLevenbegrMarquardtOptimization" ); __BEGIN__; if( JacobianFunction == 0 || function == 0 || X0 == 0 || observRes == 0 || resultX == 0 ) { CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" ); } if( !CV_IS_MAT(X0) || !CV_IS_MAT(observRes) || !CV_IS_MAT(resultX) ) { CV_ERROR( CV_StsUnsupportedFormat, "Some of input parameters must be a matrices" ); } int numVal; int numFunc; double valError; double valNewError; numVal = X0->rows; numFunc = observRes->rows; /* test input data */ if( X0->cols != 1 ) { CV_ERROR( CV_StsUnmatchedSizes, "Number of colomn of vector X0 must be 1" ); } if( observRes->cols != 1 ) { CV_ERROR( CV_StsUnmatchedSizes, "Number of colomn of vector observed rusult must be 1" ); } if( resultX->cols != 1 || resultX->rows != numVal ) { CV_ERROR( CV_StsUnmatchedSizes, "Size of result vector X must be equals to X0" ); } if( maxIter <= 0 ) { CV_ERROR( CV_StsUnmatchedSizes, "Number of maximum iteration must be > 0" ); } if( epsilon < 0 ) { CV_ERROR( CV_StsUnmatchedSizes, "Epsilon must be >= 0" ); } /* copy x0 to current value of x */ CV_CALL( vectX = cvCreateMat(numVal, 1, CV_64F) ); CV_CALL( vectNewX = cvCreateMat(numVal, 1, CV_64F) ); CV_CALL( resFunc = cvCreateMat(numFunc,1, CV_64F) ); CV_CALL( resNewFunc = cvCreateMat(numFunc,1, CV_64F) ); CV_CALL( error = cvCreateMat(numFunc,1, CV_64F) ); CV_CALL( errorNew = cvCreateMat(numFunc,1, CV_64F) ); CV_CALL( Jac = cvCreateMat(numFunc,numVal, CV_64F) ); CV_CALL( delta = cvCreateMat(numVal, 1, CV_64F) ); CV_CALL( matrJtJ = cvCreateMat(numVal, numVal, CV_64F) ); CV_CALL( matrJtJN = cvCreateMat(numVal, numVal, CV_64F) ); CV_CALL( matrJt = cvCreateMat(numVal, numFunc,CV_64F) ); CV_CALL( vectB = cvCreateMat(numVal, 1, CV_64F) ); cvCopy(X0,vectX); /* ========== Main optimization loop ============ */ double change; int currIter; double alpha; change = 1; currIter = 0; alpha = 0.001; do { /* Compute value of function */ function(vectX,resFunc); /* Print result of function to file */ /* Compute error */ cvSub(observRes,resFunc,error); //valError = error_function(observRes,resFunc); /* Need to use new version of computing error (norm) */ valError = cvNorm(observRes,resFunc); /* Compute Jacobian for given point vectX */ JacobianFunction(vectX,Jac); /* Define optimal delta for J'*J*delta=J'*error */ /* compute J'J */ cvMulTransposed(Jac,matrJtJ,1); cvCopy(matrJtJ,matrJtJN); /* compute J'*error */ cvTranspose(Jac,matrJt); cvmMul(matrJt,error,vectB); /* Solve normal equation for given alpha and Jacobian */ do { /* Increase diagonal elements by alpha */ for( int i = 0; i < numVal; i++ ) { double val; val = cvmGet(matrJtJ,i,i); cvmSet(matrJtJN,i,i,(1+alpha)*val); } /* Solve system to define delta */ cvSolve(matrJtJN,vectB,delta,CV_SVD); /* We know delta and we can define new value of vector X */ cvAdd(vectX,delta,vectNewX); /* Compute result of function for new vector X */ function(vectNewX,resNewFunc); cvSub(observRes,resNewFunc,errorNew); valNewError = cvNorm(observRes,resNewFunc); currIter++; if( valNewError < valError ) {/* accept new value */ valError = valNewError; /* Compute relative change of required parameter vectorX. change = norm(curr-prev) / norm(curr) ) */ change = cvNorm(vectX, vectNewX, CV_RELATIVE_L2); alpha /= 10; cvCopy(vectNewX,vectX); break; } else { alpha *= 10; } } while ( currIter < maxIter ); /* new value of X and alpha were accepted */ } while ( change > epsilon && currIter < maxIter ); /* result was computed */ cvCopy(vectX,resultX); __END__; cvReleaseMat(&vectX); cvReleaseMat(&vectNewX); cvReleaseMat(&resFunc); cvReleaseMat(&resNewFunc); cvReleaseMat(&error); cvReleaseMat(&errorNew); cvReleaseMat(&Jac); cvReleaseMat(&delta); cvReleaseMat(&matrJtJ); cvReleaseMat(&matrJtJN); cvReleaseMat(&matrJt); cvReleaseMat(&vectB); return; } #endif /*------------------------------------------------------------------------------*/ #if 0 //tests void Jac_Func2(CvMat *vectX,CvMat *Jac) { double x = cvmGet(vectX,0,0); double y = cvmGet(vectX,1,0); cvmSet(Jac,0,0,2*(x-2)); cvmSet(Jac,0,1,2*(y+3)); cvmSet(Jac,1,0,1); cvmSet(Jac,1,1,1); return; } void Res_Func2(CvMat *vectX,CvMat *res) { double x = cvmGet(vectX,0,0); double y = cvmGet(vectX,1,0); cvmSet(res,0,0,(x-2)*(x-2)+(y+3)*(y+3)); cvmSet(res,1,0,x+y); return; } double Err_Func2(CvMat *obs,CvMat *res) { CvMat *tmp; tmp = cvCreateMat(obs->rows,1,CV_64F); cvSub(obs,res,tmp); double e; e = cvNorm(tmp); return e; } void TestOptimX2Y2() { CvMat vectX0; double vectX0_dat[2]; vectX0 = cvMat(2,1,CV_64F,vectX0_dat); vectX0_dat[0] = 5; vectX0_dat[1] = -7; CvMat observRes; double observRes_dat[2]; observRes = cvMat(2,1,CV_64F,observRes_dat); observRes_dat[0] = 0; observRes_dat[1] = -1; observRes_dat[0] = 0; observRes_dat[1] = -1.2; CvMat optimX; double optimX_dat[2]; optimX = cvMat(2,1,CV_64F,optimX_dat); LevenbegrMarquardtOptimization( Jac_Func2, Res_Func2, Err_Func2, &vectX0,&observRes,&optimX,100,0.000001); return; } #endif