#!/usr/bin/env python ''' Feature homography ================== Example of using features2d framework for interactive video homography matching. ORB features and FLANN matcher are used. The actual tracking is implemented by PlaneTracker class in plane_tracker.py ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 import sys PY3 = sys.version_info[0] == 3 if PY3: xrange = range # local modules from tst_scene_render import TestSceneRender def intersectionRate(s1, s2): x1, y1, x2, y2 = s1 s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]]) area, intersection = cv2.intersectConvexConvex(s1, np.array(s2)) return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(np.array(s2))) from tests_common import NewOpenCVTests class feature_homography_test(NewOpenCVTests): render = None tracker = None framesCounter = 0 frame = None def test_feature_homography(self): self.render = TestSceneRender(self.get_sample('samples/python2/data/graf1.png'), self.get_sample('samples/c/box.png'), noise = 0.4, speed = 0.5) self.frame = self.render.getNextFrame() self.tracker = PlaneTracker() self.tracker.clear() self.tracker.add_target(self.frame, self.render.getCurrentRect()) while self.framesCounter < 100: self.framesCounter += 1 tracked = self.tracker.track(self.frame) if len(tracked) > 0: tracked = tracked[0] self.assertGreater(intersectionRate(self.render.getCurrentRect(), np.int32(tracked.quad)), 0.6) else: self.assertEqual(0, 1, 'Tracking error') self.frame = self.render.getNextFrame() # built-in modules from collections import namedtuple FLANN_INDEX_KDTREE = 1 FLANN_INDEX_LSH = 6 flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 MIN_MATCH_COUNT = 10 ''' image - image to track rect - tracked rectangle (x1, y1, x2, y2) keypoints - keypoints detected inside rect descrs - their descriptors data - some user-provided data ''' PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data') ''' target - reference to PlanarTarget p0 - matched points coords in target image p1 - matched points coords in input frame H - homography matrix from p0 to p1 quad - target bounary quad in input frame ''' TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad') class PlaneTracker: def __init__(self): self.detector = cv2.ORB( nfeatures = 1000 ) self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) self.targets = [] self.frame_points = [] def add_target(self, image, rect, data=None): '''Add a new tracking target.''' x0, y0, x1, y1 = rect raw_points, raw_descrs = self.detect_features(image) points, descs = [], [] for kp, desc in zip(raw_points, raw_descrs): x, y = kp.pt if x0 <= x <= x1 and y0 <= y <= y1: points.append(kp) descs.append(desc) descs = np.uint8(descs) self.matcher.add([descs]) target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=data) self.targets.append(target) def clear(self): '''Remove all targets''' self.targets = [] self.matcher.clear() def track(self, frame): '''Returns a list of detected TrackedTarget objects''' self.frame_points, frame_descrs = self.detect_features(frame) if len(self.frame_points) < MIN_MATCH_COUNT: return [] matches = self.matcher.knnMatch(frame_descrs, k = 2) matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75] if len(matches) < MIN_MATCH_COUNT: return [] matches_by_id = [[] for _ in xrange(len(self.targets))] for m in matches: matches_by_id[m.imgIdx].append(m) tracked = [] for imgIdx, matches in enumerate(matches_by_id): if len(matches) < MIN_MATCH_COUNT: continue target = self.targets[imgIdx] p0 = [target.keypoints[m.trainIdx].pt for m in matches] p1 = [self.frame_points[m.queryIdx].pt for m in matches] p0, p1 = np.float32((p0, p1)) H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0) status = status.ravel() != 0 if status.sum() < MIN_MATCH_COUNT: continue p0, p1 = p0[status], p1[status] x0, y0, x1, y1 = target.rect quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]) quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2) track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad) tracked.append(track) tracked.sort(key = lambda t: len(t.p0), reverse=True) return tracked def detect_features(self, frame): '''detect_features(self, frame) -> keypoints, descrs''' keypoints, descrs = self.detector.detectAndCompute(frame, None) if descrs is None: # detectAndCompute returns descs=None if not keypoints found descrs = [] return keypoints, descrs