#!/usr/bin/env python ''' MSER detector test ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 from tests_common import NewOpenCVTests class mser_test(NewOpenCVTests): def test_mser(self): img = self.get_sample('cv/mser/puzzle.png', 0) smallImg = [ [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], [255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255], [255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255], [255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255], [255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255], [255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255], [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255] ] thresharr = [ 0, 70, 120, 180, 255 ] kDelta = 5 np.random.seed(10) for i in range(100): use_big_image = int(np.random.rand(1,1)*7) != 0 invert = int(np.random.rand(1,1)*2) != 0 binarize = int(np.random.rand(1,1)*5) != 0 if use_big_image else False blur = True #int(np.random.rand(1,1)*2) != 0 #binarized images are processed incorrectly thresh = thresharr[int(np.random.rand(1,1)*5)] src0 = img if use_big_image else np.array(smallImg).astype('uint8') src = src0.copy() kMinArea = 256 if use_big_image else 10 kMaxArea = int(src.shape[0]*src.shape[1]/4) mserExtractor = cv2.MSER(kDelta, kMinArea, kMaxArea) if invert: cv2.bitwise_not(src, src) if binarize: _, src = cv2.threshold(src, thresh, 255, cv2.THRESH_BINARY) if blur: src = cv2.GaussianBlur(src, (5, 5), 1.5, 1.5) minRegs = 7 if use_big_image else 2 maxRegs = 1000 if use_big_image else 15 if binarize and (thresh == 0 or thresh == 255): minRegs = maxRegs = 0 msers = mserExtractor.detect(src) nmsers = len(msers) self.assertLessEqual(minRegs, nmsers) self.assertGreaterEqual(maxRegs, nmsers)