/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_imgproc.hpp" #include "opencv2/core/hal/intrin.hpp" #include "opencv2/core/openvx/ovx_defs.hpp" namespace cv { template struct FixPtCast { typedef int type1; typedef T rtype; rtype operator ()(type1 arg) const { return (T)((arg + (1 << (shift-1))) >> shift); } }; template struct FltCast { typedef T type1; typedef T rtype; rtype operator ()(type1 arg) const { return arg*(T)(1./(1 << shift)); } }; template int PyrDownVecH(const T1*, T2*, int) { // row[x ] = src[x * 2 + 2*cn ] * 6 + (src[x * 2 + cn ] + src[x * 2 + 3*cn ]) * 4 + src[x * 2 ] + src[x * 2 + 4*cn ]; // row[x + 1] = src[x * 2 + 2*cn+1] * 6 + (src[x * 2 + cn+1] + src[x * 2 + 3*cn+1]) * 4 + src[x * 2 + 1] + src[x * 2 + 4*cn+1]; // .... // row[x + cn-1] = src[x * 2 + 3*cn-1] * 6 + (src[x * 2 + 2*cn-1] + src[x * 2 + 4*cn-1]) * 4 + src[x * 2 + cn-1] + src[x * 2 + 5*cn-1]; return 0; } template int PyrUpVecH(const T1*, T2*, int) { return 0; } template int PyrDownVecV(T1**, T2*, int) { return 0; } template int PyrUpVecV(T1**, T2**, int) { return 0; } #if CV_SIMD template<> int PyrDownVecH(const uchar* src, int* row, int width) { int x = 0; const uchar *src01 = src, *src23 = src + 2, *src4 = src + 3; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); for (; x <= width - v_int32::nlanes; x += v_int32::nlanes, src01 += v_int16::nlanes, src23 += v_int16::nlanes, src4 += v_int16::nlanes, row += v_int32::nlanes) v_store(row, v_dotprod(v_reinterpret_as_s16(vx_load_expand(src01)), v_1_4) + v_dotprod(v_reinterpret_as_s16(vx_load_expand(src23)), v_6_4) + (v_reinterpret_as_s32(vx_load_expand(src4)) >> 16)); vx_cleanup(); return x; } template<> int PyrDownVecH(const uchar* src, int* row, int width) { int x = 0; const uchar *src01 = src, *src23 = src + 4, *src4 = src + 6; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); for (; x <= width - v_int32::nlanes; x += v_int32::nlanes, src01 += v_int16::nlanes, src23 += v_int16::nlanes, src4 += v_int16::nlanes, row += v_int32::nlanes) v_store(row, v_dotprod(v_interleave_pairs(v_reinterpret_as_s16(vx_load_expand(src01))), v_1_4) + v_dotprod(v_interleave_pairs(v_reinterpret_as_s16(vx_load_expand(src23))), v_6_4) + (v_reinterpret_as_s32(v_interleave_pairs(vx_load_expand(src4))) >> 16)); vx_cleanup(); return x; } template<> int PyrDownVecH(const uchar* src, int* row, int width) { int idx[v_int8::nlanes/2 + 4]; for (int i = 0; i < v_int8::nlanes/4 + 2; i++) { idx[i] = 6*i; idx[i + v_int8::nlanes/4 + 2] = 6*i + 3; } int x = 0; v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); for (; x <= width - v_int8::nlanes; x += 3*v_int8::nlanes/4, src += 6*v_int8::nlanes/4, row += 3*v_int8::nlanes/4) { v_uint16 r0l, r0h, r1l, r1h, r2l, r2h, r3l, r3h, r4l, r4h; v_expand(vx_lut_quads(src, idx ), r0l, r0h); v_expand(vx_lut_quads(src, idx + v_int8::nlanes/4 + 2), r1l, r1h); v_expand(vx_lut_quads(src, idx + 1 ), r2l, r2h); v_expand(vx_lut_quads(src, idx + v_int8::nlanes/4 + 3), r3l, r3h); v_expand(vx_lut_quads(src, idx + 2 ), r4l, r4h); v_zip(r2l, r1l + r3l, r1l, r3l); v_zip(r2h, r1h + r3h, r1h, r3h); r0l += r4l; r0h += r4h; v_store(row , v_pack_triplets(v_dotprod(v_reinterpret_as_s16(r1l), v_6_4) + v_reinterpret_as_s32(v_expand_low( r0l)))); v_store(row + 3*v_int32::nlanes/4, v_pack_triplets(v_dotprod(v_reinterpret_as_s16(r3l), v_6_4) + v_reinterpret_as_s32(v_expand_high(r0l)))); v_store(row + 6*v_int32::nlanes/4, v_pack_triplets(v_dotprod(v_reinterpret_as_s16(r1h), v_6_4) + v_reinterpret_as_s32(v_expand_low( r0h)))); v_store(row + 9*v_int32::nlanes/4, v_pack_triplets(v_dotprod(v_reinterpret_as_s16(r3h), v_6_4) + v_reinterpret_as_s32(v_expand_high(r0h)))); } vx_cleanup(); return x; } template<> int PyrDownVecH(const uchar* src, int* row, int width) { int x = 0; const uchar *src01 = src, *src23 = src + 8, *src4 = src + 12; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); for (; x <= width - v_int32::nlanes; x += v_int32::nlanes, src01 += v_int16::nlanes, src23 += v_int16::nlanes, src4 += v_int16::nlanes, row += v_int32::nlanes) v_store(row, v_dotprod(v_interleave_quads(v_reinterpret_as_s16(vx_load_expand(src01))), v_1_4) + v_dotprod(v_interleave_quads(v_reinterpret_as_s16(vx_load_expand(src23))), v_6_4) + (v_reinterpret_as_s32(v_interleave_quads(vx_load_expand(src4))) >> 16)); vx_cleanup(); return x; } template<> int PyrDownVecH(const short* src, int* row, int width) { int x = 0; const short *src01 = src, *src23 = src + 2, *src4 = src + 3; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); for (; x <= width - v_int32::nlanes; x += v_int32::nlanes, src01 += v_int16::nlanes, src23 += v_int16::nlanes, src4 += v_int16::nlanes, row += v_int32::nlanes) v_store(row, v_dotprod(vx_load(src01), v_1_4) + v_dotprod(vx_load(src23), v_6_4) + (v_reinterpret_as_s32(vx_load(src4)) >> 16)); vx_cleanup(); return x; } template<> int PyrDownVecH(const short* src, int* row, int width) { int x = 0; const short *src01 = src, *src23 = src + 4, *src4 = src + 6; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); for (; x <= width - v_int32::nlanes; x += v_int32::nlanes, src01 += v_int16::nlanes, src23 += v_int16::nlanes, src4 += v_int16::nlanes, row += v_int32::nlanes) v_store(row, v_dotprod(v_interleave_pairs(vx_load(src01)), v_1_4) + v_dotprod(v_interleave_pairs(vx_load(src23)), v_6_4) + (v_reinterpret_as_s32(v_interleave_pairs(vx_load(src4))) >> 16)); vx_cleanup(); return x; } template<> int PyrDownVecH(const short* src, int* row, int width) { int idx[v_int16::nlanes/2 + 4]; for (int i = 0; i < v_int16::nlanes/4 + 2; i++) { idx[i] = 6*i; idx[i + v_int16::nlanes/4 + 2] = 6*i + 3; } int x = 0; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); for (; x <= width - v_int16::nlanes; x += 3*v_int16::nlanes/4, src += 6*v_int16::nlanes/4, row += 3*v_int16::nlanes/4) { v_int16 r0, r1, r2, r3, r4; v_zip(vx_lut_quads(src, idx), vx_lut_quads(src, idx + v_int16::nlanes/4 + 2), r0, r1); v_zip(vx_lut_quads(src, idx + 1), vx_lut_quads(src, idx + v_int16::nlanes/4 + 3), r2, r3); r4 = vx_lut_quads(src, idx + 2); v_store(row, v_pack_triplets(v_dotprod(r0, v_1_4) + v_dotprod(r2, v_6_4) + v_expand_low(r4))); v_store(row + 3*v_int32::nlanes/4, v_pack_triplets(v_dotprod(r1, v_1_4) + v_dotprod(r3, v_6_4) + v_expand_high(r4))); } vx_cleanup(); return x; } template<> int PyrDownVecH(const short* src, int* row, int width) { int idx[v_int16::nlanes/2 + 4]; for (int i = 0; i < v_int16::nlanes/4 + 2; i++) { idx[i] = 8*i; idx[i + v_int16::nlanes/4 + 2] = 8*i + 4; } int x = 0; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); for (; x <= width - v_int16::nlanes; x += v_int16::nlanes, src += 2*v_int16::nlanes, row += v_int16::nlanes) { v_int16 r0, r1, r2, r3, r4; v_zip(vx_lut_quads(src, idx), vx_lut_quads(src, idx + v_int16::nlanes/4 + 2), r0, r1); v_zip(vx_lut_quads(src, idx + 1), vx_lut_quads(src, idx + v_int16::nlanes/4 + 3), r2, r3); r4 = vx_lut_quads(src, idx + 2); v_store(row, v_dotprod(r0, v_1_4) + v_dotprod(r2, v_6_4) + v_expand_low(r4)); v_store(row + v_int32::nlanes, v_dotprod(r1, v_1_4) + v_dotprod(r3, v_6_4) + v_expand_high(r4)); } vx_cleanup(); return x; } template<> int PyrDownVecH(const ushort* src, int* row, int width) { int x = 0; const ushort *src01 = src, *src23 = src + 2, *src4 = src + 3; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); v_uint16 v_half = vx_setall_u16(0x8000); v_int32 v_half15 = vx_setall_s32(0x00078000); for (; x <= width - v_int32::nlanes; x += v_int32::nlanes, src01 += v_int16::nlanes, src23 += v_int16::nlanes, src4 += v_int16::nlanes, row += v_int32::nlanes) v_store(row, v_dotprod(v_reinterpret_as_s16(v_sub_wrap(vx_load(src01), v_half)), v_1_4) + v_dotprod(v_reinterpret_as_s16(v_sub_wrap(vx_load(src23), v_half)), v_6_4) + v_reinterpret_as_s32(v_reinterpret_as_u32(vx_load(src4)) >> 16) + v_half15); vx_cleanup(); return x; } template<> int PyrDownVecH(const ushort* src, int* row, int width) { int x = 0; const ushort *src01 = src, *src23 = src + 4, *src4 = src + 6; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); v_uint16 v_half = vx_setall_u16(0x8000); v_int32 v_half15 = vx_setall_s32(0x00078000); for (; x <= width - v_int32::nlanes; x += v_int32::nlanes, src01 += v_int16::nlanes, src23 += v_int16::nlanes, src4 += v_int16::nlanes, row += v_int32::nlanes) v_store(row, v_dotprod(v_interleave_pairs(v_reinterpret_as_s16(v_sub_wrap(vx_load(src01), v_half))), v_1_4) + v_dotprod(v_interleave_pairs(v_reinterpret_as_s16(v_sub_wrap(vx_load(src23), v_half))), v_6_4) + v_reinterpret_as_s32(v_reinterpret_as_u32(v_interleave_pairs(vx_load(src4))) >> 16) + v_half15); vx_cleanup(); return x; } template<> int PyrDownVecH(const ushort* src, int* row, int width) { int idx[v_int16::nlanes/2 + 4]; for (int i = 0; i < v_int16::nlanes/4 + 2; i++) { idx[i] = 6*i; idx[i + v_int16::nlanes/4 + 2] = 6*i + 3; } int x = 0; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); v_uint16 v_half = vx_setall_u16(0x8000); v_int32 v_half15 = vx_setall_s32(0x00078000); for (; x <= width - v_int16::nlanes; x += 3*v_int16::nlanes/4, src += 6*v_int16::nlanes/4, row += 3*v_int16::nlanes/4) { v_uint16 r0, r1, r2, r3, r4; v_zip(vx_lut_quads(src, idx), vx_lut_quads(src, idx + v_int16::nlanes/4 + 2), r0, r1); v_zip(vx_lut_quads(src, idx + 1), vx_lut_quads(src, idx + v_int16::nlanes/4 + 3), r2, r3); r4 = vx_lut_quads(src, idx + 2); v_store(row , v_pack_triplets(v_dotprod(v_reinterpret_as_s16(v_sub_wrap(r0, v_half)), v_1_4) + v_dotprod(v_reinterpret_as_s16(v_sub_wrap(r2, v_half)), v_6_4) + v_reinterpret_as_s32(v_expand_low(r4)) + v_half15)); v_store(row + 3*v_int32::nlanes/4, v_pack_triplets(v_dotprod(v_reinterpret_as_s16(v_sub_wrap(r1, v_half)), v_1_4) + v_dotprod(v_reinterpret_as_s16(v_sub_wrap(r3, v_half)), v_6_4) + v_reinterpret_as_s32(v_expand_high(r4)) + v_half15)); } vx_cleanup(); return x; } template<> int PyrDownVecH(const ushort* src, int* row, int width) { int idx[v_int16::nlanes/2 + 4]; for (int i = 0; i < v_int16::nlanes/4 + 2; i++) { idx[i] = 8*i; idx[i + v_int16::nlanes/4 + 2] = 8*i + 4; } int x = 0; v_int16 v_1_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040001)); v_int16 v_6_4 = v_reinterpret_as_s16(vx_setall_u32(0x00040006)); v_uint16 v_half = vx_setall_u16(0x8000); v_int32 v_half15 = vx_setall_s32(0x00078000); for (; x <= width - v_int16::nlanes; x += v_int16::nlanes, src += 2*v_int16::nlanes, row += v_int16::nlanes) { v_uint16 r0, r1, r2, r3, r4; v_zip(vx_lut_quads(src, idx), vx_lut_quads(src, idx + v_int16::nlanes/4 + 2), r0, r1); v_zip(vx_lut_quads(src, idx + 1), vx_lut_quads(src, idx + v_int16::nlanes/4 + 3), r2, r3); r4 = vx_lut_quads(src, idx + 2); v_store(row , v_dotprod(v_reinterpret_as_s16(v_sub_wrap(r0, v_half)), v_1_4) + v_dotprod(v_reinterpret_as_s16(v_sub_wrap(r2, v_half)), v_6_4) + v_reinterpret_as_s32(v_expand_low(r4)) + v_half15); v_store(row + v_int32::nlanes, v_dotprod(v_reinterpret_as_s16(v_sub_wrap(r1, v_half)), v_1_4) + v_dotprod(v_reinterpret_as_s16(v_sub_wrap(r3, v_half)), v_6_4) + v_reinterpret_as_s32(v_expand_high(r4)) + v_half15); } vx_cleanup(); return x; } template<> int PyrDownVecH(const float* src, float* row, int width) { int x = 0; const float *src01 = src, *src23 = src + 2, *src4 = src + 3; v_float32 _4 = vx_setall_f32(4.f), _6 = vx_setall_f32(6.f); for (; x <= width - v_float32::nlanes; x += v_float32::nlanes, src01 += 2*v_float32::nlanes, src23 += 2*v_float32::nlanes, src4 += 2*v_float32::nlanes, row+=v_float32::nlanes) { v_float32 r0, r1, r2, r3, r4, rtmp; v_load_deinterleave(src01, r0, r1); v_load_deinterleave(src23, r2, r3); v_load_deinterleave(src4, rtmp, r4); v_store(row, v_muladd(r2, _6, v_muladd(r1 + r3, _4, r0 + r4))); } vx_cleanup(); return x; } template<> int PyrDownVecH(const float* src, float* row, int width) { int x = 0; const float *src01 = src, *src23 = src + 4, *src4 = src + 6; v_float32 _4 = vx_setall_f32(4.f), _6 = vx_setall_f32(6.f); for (; x <= width - 2*v_float32::nlanes; x += 2*v_float32::nlanes, src01 += 4*v_float32::nlanes, src23 += 4*v_float32::nlanes, src4 += 4*v_float32::nlanes, row += 2*v_float32::nlanes) { v_float32 r0a, r0b, r1a, r1b, r2a, r2b, r3a, r3b, r4a, r4b, rtmpa, rtmpb; v_load_deinterleave(src01, r0a, r0b, r1a, r1b); v_load_deinterleave(src23, r2a, r2b, r3a, r3b); v_load_deinterleave(src4, rtmpa, rtmpb, r4a, r4b); v_store_interleave(row, v_muladd(r2a, _6, v_muladd(r1a + r3a, _4, r0a + r4a)), v_muladd(r2b, _6, v_muladd(r1b + r3b, _4, r0b + r4b))); } vx_cleanup(); return x; } template<> int PyrDownVecH(const float* src, float* row, int width) { int idx[v_float32::nlanes/2 + 4]; for (int i = 0; i < v_float32::nlanes/4 + 2; i++) { idx[i] = 6*i; idx[i + v_float32::nlanes/4 + 2] = 6*i + 3; } int x = 0; v_float32 _4 = vx_setall_f32(4.f), _6 = vx_setall_f32(6.f); for (; x <= width - v_float32::nlanes; x += 3*v_float32::nlanes/4, src += 6*v_float32::nlanes/4, row += 3*v_float32::nlanes/4) { v_float32 r0 = vx_lut_quads(src, idx); v_float32 r1 = vx_lut_quads(src, idx + v_float32::nlanes/4 + 2); v_float32 r2 = vx_lut_quads(src, idx + 1); v_float32 r3 = vx_lut_quads(src, idx + v_float32::nlanes/4 + 3); v_float32 r4 = vx_lut_quads(src, idx + 2); v_store(row, v_pack_triplets(v_muladd(r2, _6, v_muladd(r1 + r3, _4, r0 + r4)))); } vx_cleanup(); return x; } template<> int PyrDownVecH(const float* src, float* row, int width) { int idx[v_float32::nlanes/2 + 4]; for (int i = 0; i < v_float32::nlanes/4 + 2; i++) { idx[i] = 8*i; idx[i + v_float32::nlanes/4 + 2] = 8*i + 4; } int x = 0; v_float32 _4 = vx_setall_f32(4.f), _6 = vx_setall_f32(6.f); for (; x <= width - v_float32::nlanes; x += v_float32::nlanes, src += 2*v_float32::nlanes, row += v_float32::nlanes) { v_float32 r0 = vx_lut_quads(src, idx); v_float32 r1 = vx_lut_quads(src, idx + v_float32::nlanes/4 + 2); v_float32 r2 = vx_lut_quads(src, idx + 1); v_float32 r3 = vx_lut_quads(src, idx + v_float32::nlanes/4 + 3); v_float32 r4 = vx_lut_quads(src, idx + 2); v_store(row, v_muladd(r2, _6, v_muladd(r1 + r3, _4, r0 + r4))); } vx_cleanup(); return x; } #if CV_SIMD_64F template<> int PyrDownVecH(const double* src, double* row, int width) { int x = 0; const double *src01 = src, *src23 = src + 2, *src4 = src + 3; v_float64 _4 = vx_setall_f64(4.f), _6 = vx_setall_f64(6.f); for (; x <= width - v_float64::nlanes; x += v_float64::nlanes, src01 += 2*v_float64::nlanes, src23 += 2*v_float64::nlanes, src4 += 2*v_float64::nlanes, row += v_float64::nlanes) { v_float64 r0, r1, r2, r3, r4, rtmp; v_load_deinterleave(src01, r0, r1); v_load_deinterleave(src23, r2, r3); v_load_deinterleave(src4, rtmp, r4); v_store(row, v_muladd(r2, _6, v_muladd(r1 + r3, _4, r0 + r4))); } vx_cleanup(); return x; } #endif template<> int PyrDownVecV(int** src, uchar* dst, int width) { int x = 0; const int *row0 = src[0], *row1 = src[1], *row2 = src[2], *row3 = src[3], *row4 = src[4]; for( ; x <= width - v_uint8::nlanes; x += v_uint8::nlanes ) { v_uint16 r0, r1, r2, r3, r4, t0, t1; r0 = v_reinterpret_as_u16(v_pack(vx_load(row0 + x), vx_load(row0 + x + v_int32::nlanes))); r1 = v_reinterpret_as_u16(v_pack(vx_load(row1 + x), vx_load(row1 + x + v_int32::nlanes))); r2 = v_reinterpret_as_u16(v_pack(vx_load(row2 + x), vx_load(row2 + x + v_int32::nlanes))); r3 = v_reinterpret_as_u16(v_pack(vx_load(row3 + x), vx_load(row3 + x + v_int32::nlanes))); r4 = v_reinterpret_as_u16(v_pack(vx_load(row4 + x), vx_load(row4 + x + v_int32::nlanes))); t0 = r0 + r4 + (r2 + r2) + ((r1 + r3 + r2) << 2); r0 = v_reinterpret_as_u16(v_pack(vx_load(row0 + x + 2*v_int32::nlanes), vx_load(row0 + x + 3*v_int32::nlanes))); r1 = v_reinterpret_as_u16(v_pack(vx_load(row1 + x + 2*v_int32::nlanes), vx_load(row1 + x + 3*v_int32::nlanes))); r2 = v_reinterpret_as_u16(v_pack(vx_load(row2 + x + 2*v_int32::nlanes), vx_load(row2 + x + 3*v_int32::nlanes))); r3 = v_reinterpret_as_u16(v_pack(vx_load(row3 + x + 2*v_int32::nlanes), vx_load(row3 + x + 3*v_int32::nlanes))); r4 = v_reinterpret_as_u16(v_pack(vx_load(row4 + x + 2*v_int32::nlanes), vx_load(row4 + x + 3*v_int32::nlanes))); t1 = r0 + r4 + (r2 + r2) + ((r1 + r3 + r2) << 2); v_store(dst + x, v_rshr_pack<8>(t0, t1)); } if (x <= width - v_int16::nlanes) { v_uint16 r0, r1, r2, r3, r4, t0; r0 = v_reinterpret_as_u16(v_pack(vx_load(row0 + x), vx_load(row0 + x + v_int32::nlanes))); r1 = v_reinterpret_as_u16(v_pack(vx_load(row1 + x), vx_load(row1 + x + v_int32::nlanes))); r2 = v_reinterpret_as_u16(v_pack(vx_load(row2 + x), vx_load(row2 + x + v_int32::nlanes))); r3 = v_reinterpret_as_u16(v_pack(vx_load(row3 + x), vx_load(row3 + x + v_int32::nlanes))); r4 = v_reinterpret_as_u16(v_pack(vx_load(row4 + x), vx_load(row4 + x + v_int32::nlanes))); t0 = r0 + r4 + (r2 + r2) + ((r1 + r3 + r2) << 2); v_rshr_pack_store<8>(dst + x, t0); x += v_uint16::nlanes; } typedef int CV_DECL_ALIGNED(1) unaligned_int; for ( ; x <= width - v_int32x4::nlanes; x += v_int32x4::nlanes) { v_int32x4 r0, r1, r2, r3, r4, t0; r0 = v_load(row0 + x); r1 = v_load(row1 + x); r2 = v_load(row2 + x); r3 = v_load(row3 + x); r4 = v_load(row4 + x); t0 = r0 + r4 + (r2 + r2) + ((r1 + r3 + r2) << 2); *((unaligned_int*) (dst + x)) = v_reinterpret_as_s32(v_rshr_pack<8>(v_pack_u(t0, t0), v_setzero_u16())).get0(); } vx_cleanup(); return x; } template <> int PyrDownVecV(float** src, float* dst, int width) { int x = 0; const float *row0 = src[0], *row1 = src[1], *row2 = src[2], *row3 = src[3], *row4 = src[4]; v_float32 _4 = vx_setall_f32(4.f), _scale = vx_setall_f32(1.f/256); for( ; x <= width - v_float32::nlanes; x += v_float32::nlanes) { v_float32 r0, r1, r2, r3, r4; r0 = vx_load(row0 + x); r1 = vx_load(row1 + x); r2 = vx_load(row2 + x); r3 = vx_load(row3 + x); r4 = vx_load(row4 + x); v_store(dst + x, v_muladd(r1 + r3 + r2, _4, r0 + r4 + (r2 + r2)) * _scale); } vx_cleanup(); return x; } template <> int PyrDownVecV(int** src, ushort* dst, int width) { int x = 0; const int *row0 = src[0], *row1 = src[1], *row2 = src[2], *row3 = src[3], *row4 = src[4]; for( ; x <= width - v_uint16::nlanes; x += v_uint16::nlanes) { v_int32 r00 = vx_load(row0 + x), r01 = vx_load(row0 + x + v_int32::nlanes), r10 = vx_load(row1 + x), r11 = vx_load(row1 + x + v_int32::nlanes), r20 = vx_load(row2 + x), r21 = vx_load(row2 + x + v_int32::nlanes), r30 = vx_load(row3 + x), r31 = vx_load(row3 + x + v_int32::nlanes), r40 = vx_load(row4 + x), r41 = vx_load(row4 + x + v_int32::nlanes); v_store(dst + x, v_rshr_pack_u<8>(r00 + r40 + (r20 + r20) + ((r10 + r20 + r30) << 2), r01 + r41 + (r21 + r21) + ((r11 + r21 + r31) << 2))); } if (x <= width - v_int32::nlanes) { v_int32 r00 = vx_load(row0 + x), r10 = vx_load(row1 + x), r20 = vx_load(row2 + x), r30 = vx_load(row3 + x), r40 = vx_load(row4 + x); v_rshr_pack_u_store<8>(dst + x, r00 + r40 + (r20 + r20) + ((r10 + r20 + r30) << 2)); x += v_int32::nlanes; } vx_cleanup(); return x; } template <> int PyrDownVecV(int** src, short* dst, int width) { int x = 0; const int *row0 = src[0], *row1 = src[1], *row2 = src[2], *row3 = src[3], *row4 = src[4]; for( ; x <= width - v_int16::nlanes; x += v_int16::nlanes) { v_int32 r00 = vx_load(row0 + x), r01 = vx_load(row0 + x + v_int32::nlanes), r10 = vx_load(row1 + x), r11 = vx_load(row1 + x + v_int32::nlanes), r20 = vx_load(row2 + x), r21 = vx_load(row2 + x + v_int32::nlanes), r30 = vx_load(row3 + x), r31 = vx_load(row3 + x + v_int32::nlanes), r40 = vx_load(row4 + x), r41 = vx_load(row4 + x + v_int32::nlanes); v_store(dst + x, v_rshr_pack<8>(r00 + r40 + (r20 + r20) + ((r10 + r20 + r30) << 2), r01 + r41 + (r21 + r21) + ((r11 + r21 + r31) << 2))); } if (x <= width - v_int32::nlanes) { v_int32 r00 = vx_load(row0 + x), r10 = vx_load(row1 + x), r20 = vx_load(row2 + x), r30 = vx_load(row3 + x), r40 = vx_load(row4 + x); v_rshr_pack_store<8>(dst + x, r00 + r40 + (r20 + r20) + ((r10 + r20 + r30) << 2)); x += v_int32::nlanes; } vx_cleanup(); return x; } template <> int PyrUpVecV(int** src, uchar** dst, int width) { int x = 0; uchar *dst0 = dst[0], *dst1 = dst[1]; const int *row0 = src[0], *row1 = src[1], *row2 = src[2]; for( ; x <= width - v_uint8::nlanes; x += v_uint8::nlanes) { v_int16 v_r00 = v_pack(vx_load(row0 + x), vx_load(row0 + x + v_int32::nlanes)), v_r01 = v_pack(vx_load(row0 + x + 2 * v_int32::nlanes), vx_load(row0 + x + 3 * v_int32::nlanes)), v_r10 = v_pack(vx_load(row1 + x), vx_load(row1 + x + v_int32::nlanes)), v_r11 = v_pack(vx_load(row1 + x + 2 * v_int32::nlanes), vx_load(row1 + x + 3 * v_int32::nlanes)), v_r20 = v_pack(vx_load(row2 + x), vx_load(row2 + x + v_int32::nlanes)), v_r21 = v_pack(vx_load(row2 + x + 2 * v_int32::nlanes), vx_load(row2 + x + 3 * v_int32::nlanes)); v_int16 v_2r10 = v_r10 + v_r10, v_2r11 = (v_r11 + v_r11); v_store(dst0 + x, v_rshr_pack_u<6>(v_r00 + v_r20 + (v_2r10 + v_2r10 + v_2r10), v_r01 + v_r21 + (v_2r11 + v_2r11 + v_2r11))); v_store(dst1 + x, v_rshr_pack_u<6>((v_r10 + v_r20) << 2, (v_r11 + v_r21) << 2)); } if(x <= width - v_uint16::nlanes) { v_int16 v_r00 = v_pack(vx_load(row0 + x), vx_load(row0 + x + v_int32::nlanes)), v_r10 = v_pack(vx_load(row1 + x), vx_load(row1 + x + v_int32::nlanes)), v_r20 = v_pack(vx_load(row2 + x), vx_load(row2 + x + v_int32::nlanes)); v_int16 v_2r10 = v_r10 + v_r10; v_rshr_pack_u_store<6>(dst0 + x, v_r00 + v_r20 + (v_2r10 + v_2r10 + v_2r10)); v_rshr_pack_u_store<6>(dst1 + x, (v_r10 + v_r20) << 2); x += v_uint16::nlanes; } typedef int CV_DECL_ALIGNED(1) unaligned_int; for (; x <= width - v_int32x4::nlanes; x += v_int32x4::nlanes) { v_int32 v_r00 = vx_load(row0 + x), v_r10 = vx_load(row1 + x), v_r20 = vx_load(row2 + x); v_int32 v_2r10 = v_r10 + v_r10; v_int16 d = v_pack(v_r00 + v_r20 + (v_2r10 + v_2r10 + v_2r10), (v_r10 + v_r20) << 2); *(unaligned_int*)(dst0 + x) = v_reinterpret_as_s32(v_rshr_pack_u<6>(d, vx_setzero_s16())).get0(); *(unaligned_int*)(dst1 + x) = v_reinterpret_as_s32(v_rshr_pack_u<6>(v_combine_high(d, d), vx_setzero_s16())).get0(); } vx_cleanup(); return x; } template <> int PyrUpVecV(int** src, short** dst, int width) { int x = 0; short *dst0 = dst[0], *dst1 = dst[1]; const int *row0 = src[0], *row1 = src[1], *row2 = src[2]; for( ; x <= width - v_int16::nlanes; x += v_int16::nlanes) { v_int32 v_r00 = vx_load(row0 + x), v_r01 = vx_load(row0 + x + v_int32::nlanes), v_r10 = vx_load(row1 + x), v_r11 = vx_load(row1 + x + v_int32::nlanes), v_r20 = vx_load(row2 + x), v_r21 = vx_load(row2 + x + v_int32::nlanes); v_store(dst0 + x, v_rshr_pack<6>(v_r00 + v_r20 + ((v_r10 << 1) + (v_r10 << 2)), v_r01 + v_r21 + ((v_r11 << 1) + (v_r11 << 2)))); v_store(dst1 + x, v_rshr_pack<6>((v_r10 + v_r20) << 2, (v_r11 + v_r21) << 2)); } if(x <= width - v_int32::nlanes) { v_int32 v_r00 = vx_load(row0 + x), v_r10 = vx_load(row1 + x), v_r20 = vx_load(row2 + x); v_rshr_pack_store<6>(dst0 + x, v_r00 + v_r20 + ((v_r10 << 1) + (v_r10 << 2))); v_rshr_pack_store<6>(dst1 + x, (v_r10 + v_r20) << 2); x += v_int32::nlanes; } vx_cleanup(); return x; } template <> int PyrUpVecV(int** src, ushort** dst, int width) { int x = 0; ushort *dst0 = dst[0], *dst1 = dst[1]; const int *row0 = src[0], *row1 = src[1], *row2 = src[2]; for( ; x <= width - v_uint16::nlanes; x += v_uint16::nlanes) { v_int32 v_r00 = vx_load(row0 + x), v_r01 = vx_load(row0 + x + v_int32::nlanes), v_r10 = vx_load(row1 + x), v_r11 = vx_load(row1 + x + v_int32::nlanes), v_r20 = vx_load(row2 + x), v_r21 = vx_load(row2 + x + v_int32::nlanes); v_store(dst0 + x, v_rshr_pack_u<6>(v_r00 + v_r20 + ((v_r10 << 1) + (v_r10 << 2)), v_r01 + v_r21 + ((v_r11 << 1) + (v_r11 << 2)))); v_store(dst1 + x, v_rshr_pack_u<6>((v_r10 + v_r20) << 2, (v_r11 + v_r21) << 2)); } if(x <= width - v_int32::nlanes) { v_int32 v_r00 = vx_load(row0 + x), v_r10 = vx_load(row1 + x), v_r20 = vx_load(row2 + x); v_rshr_pack_u_store<6>(dst0 + x, v_r00 + v_r20 + ((v_r10 << 1) + (v_r10 << 2))); v_rshr_pack_u_store<6>(dst1 + x, (v_r10 + v_r20) << 2); x += v_int32::nlanes; } vx_cleanup(); return x; } template <> int PyrUpVecV(float** src, float** dst, int width) { int x = 0; const float *row0 = src[0], *row1 = src[1], *row2 = src[2]; float *dst0 = dst[0], *dst1 = dst[1]; v_float32 v_6 = vx_setall_f32(6.0f), v_scale = vx_setall_f32(1.f/64.f), v_scale4 = vx_setall_f32(1.f/16.f); for( ; x <= width - v_float32::nlanes; x += v_float32::nlanes) { v_float32 v_r0 = vx_load(row0 + x), v_r1 = vx_load(row1 + x), v_r2 = vx_load(row2 + x); v_store(dst1 + x, v_scale4 * (v_r1 + v_r2)); v_store(dst0 + x, v_scale * (v_muladd(v_6, v_r1, v_r0) + v_r2)); } vx_cleanup(); return x; } #endif template struct PyrDownInvoker : ParallelLoopBody { PyrDownInvoker(const Mat& src, const Mat& dst, int borderType, int **tabR, int **tabM, int **tabL) { _src = &src; _dst = &dst; _borderType = borderType; _tabR = tabR; _tabM = tabM; _tabL = tabL; } void operator()(const Range& range) const CV_OVERRIDE; int **_tabR; int **_tabM; int **_tabL; const Mat *_src; const Mat *_dst; int _borderType; }; template void pyrDown_( const Mat& _src, Mat& _dst, int borderType ) { const int PD_SZ = 5; CV_Assert( !_src.empty() ); Size ssize = _src.size(), dsize = _dst.size(); int cn = _src.channels(); int tabL[CV_CN_MAX*(PD_SZ+2)], tabR[CV_CN_MAX*(PD_SZ+2)]; AutoBuffer _tabM(dsize.width*cn); int* tabM = _tabM.data(); CV_Assert( ssize.width > 0 && ssize.height > 0 && std::abs(dsize.width*2 - ssize.width) <= 2 && std::abs(dsize.height*2 - ssize.height) <= 2 ); int width0 = std::min((ssize.width-PD_SZ/2-1)/2 + 1, dsize.width); for (int x = 0; x <= PD_SZ+1; x++) { int sx0 = borderInterpolate(x - PD_SZ/2, ssize.width, borderType)*cn; int sx1 = borderInterpolate(x + width0*2 - PD_SZ/2, ssize.width, borderType)*cn; for (int k = 0; k < cn; k++) { tabL[x*cn + k] = sx0 + k; tabR[x*cn + k] = sx1 + k; } } for (int x = 0; x < dsize.width*cn; x++) tabM[x] = (x/cn)*2*cn + x % cn; int *tabLPtr = tabL; int *tabRPtr = tabR; cv::parallel_for_(Range(0,dsize.height), cv::PyrDownInvoker(_src, _dst, borderType, &tabRPtr, &tabM, &tabLPtr), cv::getNumThreads()); } template void PyrDownInvoker::operator()(const Range& range) const { const int PD_SZ = 5; typedef typename CastOp::type1 WT; typedef typename CastOp::rtype T; Size ssize = _src->size(), dsize = _dst->size(); int cn = _src->channels(); int bufstep = (int)alignSize(dsize.width*cn, 16); AutoBuffer _buf(bufstep*PD_SZ + 16); WT* buf = alignPtr((WT*)_buf.data(), 16); WT* rows[PD_SZ]; CastOp castOp; int sy0 = -PD_SZ/2, sy = range.start * 2 + sy0, width0 = std::min((ssize.width-PD_SZ/2-1)/2 + 1, dsize.width); ssize.width *= cn; dsize.width *= cn; width0 *= cn; for (int y = range.start; y < range.end; y++) { T* dst = (T*)_dst->ptr(y); WT *row0, *row1, *row2, *row3, *row4; // fill the ring buffer (horizontal convolution and decimation) int sy_limit = y*2 + 2; for( ; sy <= sy_limit; sy++ ) { WT* row = buf + ((sy - sy0) % PD_SZ)*bufstep; int _sy = borderInterpolate(sy, ssize.height, _borderType); const T* src = _src->ptr(_sy); do { int x = 0; const int* tabL = *_tabL; for( ; x < cn; x++ ) { row[x] = src[tabL[x+cn*2]]*6 + (src[tabL[x+cn]] + src[tabL[x+cn*3]])*4 + src[tabL[x]] + src[tabL[x+cn*4]]; } if( x == dsize.width ) break; if( cn == 1 ) { x += PyrDownVecH(src + x * 2 - 2, row + x, width0 - x); for( ; x < width0; x++ ) row[x] = src[x*2]*6 + (src[x*2 - 1] + src[x*2 + 1])*4 + src[x*2 - 2] + src[x*2 + 2]; } else if( cn == 2 ) { x += PyrDownVecH(src + x * 2 - 4, row + x, width0 - x); for( ; x < width0; x += 2 ) { const T* s = src + x*2; WT t0 = s[0] * 6 + (s[-2] + s[2]) * 4 + s[-4] + s[4]; WT t1 = s[1] * 6 + (s[-1] + s[3]) * 4 + s[-3] + s[5]; row[x] = t0; row[x + 1] = t1; } } else if( cn == 3 ) { x += PyrDownVecH(src + x * 2 - 6, row + x, width0 - x); for( ; x < width0; x += 3 ) { const T* s = src + x*2; WT t0 = s[0]*6 + (s[-3] + s[3])*4 + s[-6] + s[6]; WT t1 = s[1]*6 + (s[-2] + s[4])*4 + s[-5] + s[7]; WT t2 = s[2]*6 + (s[-1] + s[5])*4 + s[-4] + s[8]; row[x] = t0; row[x+1] = t1; row[x+2] = t2; } } else if( cn == 4 ) { x += PyrDownVecH(src + x * 2 - 8, row + x, width0 - x); for( ; x < width0; x += 4 ) { const T* s = src + x*2; WT t0 = s[0]*6 + (s[-4] + s[4])*4 + s[-8] + s[8]; WT t1 = s[1]*6 + (s[-3] + s[5])*4 + s[-7] + s[9]; row[x] = t0; row[x+1] = t1; t0 = s[2]*6 + (s[-2] + s[6])*4 + s[-6] + s[10]; t1 = s[3]*6 + (s[-1] + s[7])*4 + s[-5] + s[11]; row[x+2] = t0; row[x+3] = t1; } } else { for( ; x < width0; x++ ) { int sx = (*_tabM)[x]; row[x] = src[sx]*6 + (src[sx - cn] + src[sx + cn])*4 + src[sx - cn*2] + src[sx + cn*2]; } } // tabR const int* tabR = *_tabR; for (int x_ = 0; x < dsize.width; x++, x_++) { row[x] = src[tabR[x_+cn*2]]*6 + (src[tabR[x_+cn]] + src[tabR[x_+cn*3]])*4 + src[tabR[x_]] + src[tabR[x_+cn*4]]; } } while (0); } // do vertical convolution and decimation and write the result to the destination image for (int k = 0; k < PD_SZ; k++) rows[k] = buf + ((y*2 - PD_SZ/2 + k - sy0) % PD_SZ)*bufstep; row0 = rows[0]; row1 = rows[1]; row2 = rows[2]; row3 = rows[3]; row4 = rows[4]; int x = PyrDownVecV(rows, dst, dsize.width); for (; x < dsize.width; x++ ) dst[x] = castOp(row2[x]*6 + (row1[x] + row3[x])*4 + row0[x] + row4[x]); } } template void pyrUp_( const Mat& _src, Mat& _dst, int) { const int PU_SZ = 3; typedef typename CastOp::type1 WT; typedef typename CastOp::rtype T; Size ssize = _src.size(), dsize = _dst.size(); int cn = _src.channels(); int bufstep = (int)alignSize((dsize.width+1)*cn, 16); AutoBuffer _buf(bufstep*PU_SZ + 16); WT* buf = alignPtr((WT*)_buf.data(), 16); AutoBuffer _dtab(ssize.width*cn); int* dtab = _dtab.data(); WT* rows[PU_SZ]; T* dsts[2]; CastOp castOp; //PyrUpVecH vecOpH; CV_Assert( std::abs(dsize.width - ssize.width*2) == dsize.width % 2 && std::abs(dsize.height - ssize.height*2) == dsize.height % 2); int k, x, sy0 = -PU_SZ/2, sy = sy0; ssize.width *= cn; dsize.width *= cn; for( x = 0; x < ssize.width; x++ ) dtab[x] = (x/cn)*2*cn + x % cn; for( int y = 0; y < ssize.height; y++ ) { T* dst0 = _dst.ptr(y*2); T* dst1 = _dst.ptr(std::min(y*2+1, dsize.height-1)); WT *row0, *row1, *row2; // fill the ring buffer (horizontal convolution and decimation) for( ; sy <= y + 1; sy++ ) { WT* row = buf + ((sy - sy0) % PU_SZ)*bufstep; int _sy = borderInterpolate(sy*2, ssize.height*2, BORDER_REFLECT_101)/2; const T* src = _src.ptr(_sy); if( ssize.width == cn ) { for( x = 0; x < cn; x++ ) row[x] = row[x + cn] = src[x]*8; continue; } for( x = 0; x < cn; x++ ) { int dx = dtab[x]; WT t0 = src[x]*6 + src[x + cn]*2; WT t1 = (src[x] + src[x + cn])*4; row[dx] = t0; row[dx + cn] = t1; dx = dtab[ssize.width - cn + x]; int sx = ssize.width - cn + x; t0 = src[sx - cn] + src[sx]*7; t1 = src[sx]*8; row[dx] = t0; row[dx + cn] = t1; if (dsize.width > ssize.width*2) { row[(_dst.cols-1) + x] = row[dx + cn]; } } for( x = cn; x < ssize.width - cn; x++ ) { int dx = dtab[x]; WT t0 = src[x-cn] + src[x]*6 + src[x+cn]; WT t1 = (src[x] + src[x+cn])*4; row[dx] = t0; row[dx+cn] = t1; } } // do vertical convolution and decimation and write the result to the destination image for( k = 0; k < PU_SZ; k++ ) rows[k] = buf + ((y - PU_SZ/2 + k - sy0) % PU_SZ)*bufstep; row0 = rows[0]; row1 = rows[1]; row2 = rows[2]; dsts[0] = dst0; dsts[1] = dst1; x = PyrUpVecV(rows, dsts, dsize.width); for( ; x < dsize.width; x++ ) { T t1 = castOp((row1[x] + row2[x])*4); T t0 = castOp(row0[x] + row1[x]*6 + row2[x]); dst1[x] = t1; dst0[x] = t0; } } if (dsize.height > ssize.height*2) { T* dst0 = _dst.ptr(ssize.height*2-2); T* dst2 = _dst.ptr(ssize.height*2); for(x = 0; x < dsize.width ; x++ ) { dst2[x] = dst0[x]; } } } typedef void (*PyrFunc)(const Mat&, Mat&, int); #ifdef HAVE_OPENCL static bool ocl_pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType) { int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; if (cn > 4 || (depth == CV_64F && !doubleSupport)) return false; Size ssize = _src.size(); Size dsize = _dsz.empty() ? Size((ssize.width + 1) / 2, (ssize.height + 1) / 2) : _dsz; if (dsize.height < 2 || dsize.width < 2) return false; CV_Assert( ssize.width > 0 && ssize.height > 0 && std::abs(dsize.width*2 - ssize.width) <= 2 && std::abs(dsize.height*2 - ssize.height) <= 2 ); UMat src = _src.getUMat(); _dst.create( dsize, src.type() ); UMat dst = _dst.getUMat(); int float_depth = depth == CV_64F ? CV_64F : CV_32F; const int local_size = 256; int kercn = 1; if (depth == CV_8U && float_depth == CV_32F && cn == 1 && ocl::Device::getDefault().isIntel()) kercn = 4; const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101" }; char cvt[2][50]; String buildOptions = format( "-D T=%s -D FT=%s -D convertToT=%s -D convertToFT=%s%s " "-D T1=%s -D cn=%d -D kercn=%d -D fdepth=%d -D %s -D LOCAL_SIZE=%d", ocl::typeToStr(type), ocl::typeToStr(CV_MAKETYPE(float_depth, cn)), ocl::convertTypeStr(float_depth, depth, cn, cvt[0]), ocl::convertTypeStr(depth, float_depth, cn, cvt[1]), doubleSupport ? " -D DOUBLE_SUPPORT" : "", ocl::typeToStr(depth), cn, kercn, float_depth, borderMap[borderType], local_size ); ocl::Kernel k("pyrDown", ocl::imgproc::pyr_down_oclsrc, buildOptions); if (k.empty()) return false; k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst)); size_t localThreads[2] = { (size_t)local_size/kercn, 1 }; size_t globalThreads[2] = { ((size_t)src.cols + (kercn-1))/kercn, ((size_t)dst.rows + 1) / 2 }; return k.run(2, globalThreads, localThreads, false); } static bool ocl_pyrUp( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType) { int type = _src.type(), depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type); if (channels > 4 || borderType != BORDER_DEFAULT) return false; bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; if (depth == CV_64F && !doubleSupport) return false; Size ssize = _src.size(); if (!_dsz.empty() && (_dsz != Size(ssize.width * 2, ssize.height * 2))) return false; UMat src = _src.getUMat(); Size dsize = Size(ssize.width * 2, ssize.height * 2); _dst.create( dsize, src.type() ); UMat dst = _dst.getUMat(); int float_depth = depth == CV_64F ? CV_64F : CV_32F; const int local_size = 16; char cvt[2][50]; String buildOptions = format( "-D T=%s -D FT=%s -D convertToT=%s -D convertToFT=%s%s " "-D T1=%s -D cn=%d -D LOCAL_SIZE=%d", ocl::typeToStr(type), ocl::typeToStr(CV_MAKETYPE(float_depth, channels)), ocl::convertTypeStr(float_depth, depth, channels, cvt[0]), ocl::convertTypeStr(depth, float_depth, channels, cvt[1]), doubleSupport ? " -D DOUBLE_SUPPORT" : "", ocl::typeToStr(depth), channels, local_size ); size_t globalThreads[2] = { (size_t)dst.cols, (size_t)dst.rows }; size_t localThreads[2] = { (size_t)local_size, (size_t)local_size }; ocl::Kernel k; if (ocl::Device::getDefault().isIntel() && channels == 1) { if (type == CV_8UC1 && src.cols % 2 == 0) { buildOptions.clear(); k.create("pyrUp_cols2", ocl::imgproc::pyramid_up_oclsrc, buildOptions); globalThreads[0] = dst.cols/4; globalThreads[1] = dst.rows/2; } else { k.create("pyrUp_unrolled", ocl::imgproc::pyr_up_oclsrc, buildOptions); globalThreads[0] = dst.cols/2; globalThreads[1] = dst.rows/2; } } else k.create("pyrUp", ocl::imgproc::pyr_up_oclsrc, buildOptions); if (k.empty()) return false; k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst)); return k.run(2, globalThreads, localThreads, false); } #endif } #if defined(HAVE_IPP) namespace cv { static bool ipp_pyrdown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType ) { CV_INSTRUMENT_REGION_IPP(); #if IPP_VERSION_X100 >= 810 && !IPP_DISABLE_PYRAMIDS_DOWN Size dsz = _dsz.empty() ? Size((_src.cols() + 1)/2, (_src.rows() + 1)/2) : _dsz; bool isolated = (borderType & BORDER_ISOLATED) != 0; int borderTypeNI = borderType & ~BORDER_ISOLATED; Mat src = _src.getMat(); _dst.create( dsz, src.type() ); Mat dst = _dst.getMat(); int depth = src.depth(); { bool isolated = (borderType & BORDER_ISOLATED) != 0; int borderTypeNI = borderType & ~BORDER_ISOLATED; if (borderTypeNI == BORDER_DEFAULT && (!src.isSubmatrix() || isolated) && dsz == Size(src.cols*2, src.rows*2)) { typedef IppStatus (CV_STDCALL * ippiPyrUp)(const void* pSrc, int srcStep, void* pDst, int dstStep, IppiSize srcRoi, Ipp8u* buffer); int type = src.type(); CV_SUPPRESS_DEPRECATED_START ippiPyrUp pyrUpFunc = type == CV_8UC1 ? (ippiPyrUp) ippiPyrUp_Gauss5x5_8u_C1R : type == CV_8UC3 ? (ippiPyrUp) ippiPyrUp_Gauss5x5_8u_C3R : type == CV_32FC1 ? (ippiPyrUp) ippiPyrUp_Gauss5x5_32f_C1R : type == CV_32FC3 ? (ippiPyrUp) ippiPyrUp_Gauss5x5_32f_C3R : 0; CV_SUPPRESS_DEPRECATED_END if (pyrUpFunc) { int bufferSize; IppiSize srcRoi = { src.cols, src.rows }; IppDataType dataType = depth == CV_8U ? ipp8u : ipp32f; CV_SUPPRESS_DEPRECATED_START IppStatus ok = ippiPyrUpGetBufSize_Gauss5x5(srcRoi.width, dataType, src.channels(), &bufferSize); CV_SUPPRESS_DEPRECATED_END if (ok >= 0) { Ipp8u* buffer = ippsMalloc_8u_L(bufferSize); ok = pyrUpFunc(src.data, (int) src.step, dst.data, (int) dst.step, srcRoi, buffer); ippsFree(buffer); if (ok >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return true; } } } } } #else CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(_dsz); CV_UNUSED(borderType); #endif return false; } } #endif #ifdef HAVE_OPENVX namespace cv { static bool openvx_pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType ) { using namespace ivx; Mat srcMat = _src.getMat(); if (ovx::skipSmallImages(srcMat.cols, srcMat.rows)) return false; CV_Assert(!srcMat.empty()); Size ssize = _src.size(); Size acceptableSize = Size((ssize.width + 1) / 2, (ssize.height + 1) / 2); // OpenVX limitations if((srcMat.type() != CV_8U) || (borderType != BORDER_REPLICATE) || (_dsz != acceptableSize && !_dsz.empty())) return false; // The only border mode which is supported by both cv::pyrDown() and OpenVX // and produces predictable results ivx::border_t borderMode; borderMode.mode = VX_BORDER_REPLICATE; _dst.create( acceptableSize, srcMat.type() ); Mat dstMat = _dst.getMat(); CV_Assert( ssize.width > 0 && ssize.height > 0 && std::abs(acceptableSize.width*2 - ssize.width) <= 2 && std::abs(acceptableSize.height*2 - ssize.height) <= 2 ); try { Context context = ovx::getOpenVXContext(); if(context.vendorID() == VX_ID_KHRONOS) { // This implementation performs floor-like rounding // (OpenCV uses floor(x+0.5)-like rounding) // and ignores border mode (and loses 1px size border) return false; } Image srcImg = Image::createFromHandle(context, Image::matTypeToFormat(srcMat.type()), Image::createAddressing(srcMat), (void*)srcMat.data); Image dstImg = Image::createFromHandle(context, Image::matTypeToFormat(dstMat.type()), Image::createAddressing(dstMat), (void*)dstMat.data); ivx::Scalar kernelSize = ivx::Scalar::create(context, 5); Graph graph = Graph::create(context); ivx::Node halfNode = ivx::Node::create(graph, VX_KERNEL_HALFSCALE_GAUSSIAN, srcImg, dstImg, kernelSize); halfNode.setBorder(borderMode); graph.verify(); graph.process(); #ifdef VX_VERSION_1_1 //we should take user memory back before release //(it's not done automatically according to standard) srcImg.swapHandle(); dstImg.swapHandle(); #endif } catch (const RuntimeError & e) { VX_DbgThrow(e.what()); } catch (const WrapperError & e) { VX_DbgThrow(e.what()); } return true; } } #endif void cv::pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType ) { CV_INSTRUMENT_REGION(); CV_Assert(borderType != BORDER_CONSTANT); CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), ocl_pyrDown(_src, _dst, _dsz, borderType)) CV_OVX_RUN(_src.dims() <= 2, openvx_pyrDown(_src, _dst, _dsz, borderType)) Mat src = _src.getMat(); Size dsz = _dsz.empty() ? Size((src.cols + 1)/2, (src.rows + 1)/2) : _dsz; _dst.create( dsz, src.type() ); Mat dst = _dst.getMat(); int depth = src.depth(); CALL_HAL(pyrDown, cv_hal_pyrdown, src.data, src.step, src.cols, src.rows, dst.data, dst.step, dst.cols, dst.rows, depth, src.channels(), borderType); #ifdef HAVE_IPP bool isolated = (borderType & BORDER_ISOLATED) != 0; int borderTypeNI = borderType & ~BORDER_ISOLATED; #endif CV_IPP_RUN(borderTypeNI == BORDER_DEFAULT && (!_src.isSubmatrix() || isolated) && dsz == Size((_src.cols() + 1)/2, (_src.rows() + 1)/2), ipp_pyrdown( _src, _dst, _dsz, borderType)); PyrFunc func = 0; if( depth == CV_8U ) func = pyrDown_< FixPtCast >; else if( depth == CV_16S ) func = pyrDown_< FixPtCast >; else if( depth == CV_16U ) func = pyrDown_< FixPtCast >; else if( depth == CV_32F ) func = pyrDown_< FltCast >; else if( depth == CV_64F ) func = pyrDown_< FltCast >; else CV_Error( CV_StsUnsupportedFormat, "" ); func( src, dst, borderType ); } #if defined(HAVE_IPP) namespace cv { static bool ipp_pyrup( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType ) { CV_INSTRUMENT_REGION_IPP(); #if IPP_VERSION_X100 >= 810 && !IPP_DISABLE_PYRAMIDS_UP Size sz = _src.dims() <= 2 ? _src.size() : Size(); Size dsz = _dsz.empty() ? Size(_src.cols()*2, _src.rows()*2) : _dsz; Mat src = _src.getMat(); _dst.create( dsz, src.type() ); Mat dst = _dst.getMat(); int depth = src.depth(); { bool isolated = (borderType & BORDER_ISOLATED) != 0; int borderTypeNI = borderType & ~BORDER_ISOLATED; if (borderTypeNI == BORDER_DEFAULT && (!src.isSubmatrix() || isolated) && dsz == Size(src.cols*2, src.rows*2)) { typedef IppStatus (CV_STDCALL * ippiPyrUp)(const void* pSrc, int srcStep, void* pDst, int dstStep, IppiSize srcRoi, Ipp8u* buffer); int type = src.type(); CV_SUPPRESS_DEPRECATED_START ippiPyrUp pyrUpFunc = type == CV_8UC1 ? (ippiPyrUp) ippiPyrUp_Gauss5x5_8u_C1R : type == CV_8UC3 ? (ippiPyrUp) ippiPyrUp_Gauss5x5_8u_C3R : type == CV_32FC1 ? (ippiPyrUp) ippiPyrUp_Gauss5x5_32f_C1R : type == CV_32FC3 ? (ippiPyrUp) ippiPyrUp_Gauss5x5_32f_C3R : 0; CV_SUPPRESS_DEPRECATED_END if (pyrUpFunc) { int bufferSize; IppiSize srcRoi = { src.cols, src.rows }; IppDataType dataType = depth == CV_8U ? ipp8u : ipp32f; CV_SUPPRESS_DEPRECATED_START IppStatus ok = ippiPyrUpGetBufSize_Gauss5x5(srcRoi.width, dataType, src.channels(), &bufferSize); CV_SUPPRESS_DEPRECATED_END if (ok >= 0) { Ipp8u* buffer = ippsMalloc_8u_L(bufferSize); ok = pyrUpFunc(src.data, (int) src.step, dst.data, (int) dst.step, srcRoi, buffer); ippsFree(buffer); if (ok >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return true; } } } } } #else CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(_dsz); CV_UNUSED(borderType); #endif return false; } } #endif void cv::pyrUp( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType ) { CV_INSTRUMENT_REGION(); CV_Assert(borderType == BORDER_DEFAULT); CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), ocl_pyrUp(_src, _dst, _dsz, borderType)) Mat src = _src.getMat(); Size dsz = _dsz.empty() ? Size(src.cols*2, src.rows*2) : _dsz; _dst.create( dsz, src.type() ); Mat dst = _dst.getMat(); int depth = src.depth(); #ifdef HAVE_IPP bool isolated = (borderType & BORDER_ISOLATED) != 0; int borderTypeNI = borderType & ~BORDER_ISOLATED; #endif CV_IPP_RUN(borderTypeNI == BORDER_DEFAULT && (!_src.isSubmatrix() || isolated) && dsz == Size(_src.cols()*2, _src.rows()*2), ipp_pyrup( _src, _dst, _dsz, borderType)); PyrFunc func = 0; if( depth == CV_8U ) func = pyrUp_< FixPtCast >; else if( depth == CV_16S ) func = pyrUp_< FixPtCast >; else if( depth == CV_16U ) func = pyrUp_< FixPtCast >; else if( depth == CV_32F ) func = pyrUp_< FltCast >; else if( depth == CV_64F ) func = pyrUp_< FltCast >; else CV_Error( CV_StsUnsupportedFormat, "" ); func( src, dst, borderType ); } #ifdef HAVE_IPP namespace cv { static bool ipp_buildpyramid( InputArray _src, OutputArrayOfArrays _dst, int maxlevel, int borderType ) { CV_INSTRUMENT_REGION_IPP(); #if IPP_VERSION_X100 >= 810 && !IPP_DISABLE_PYRAMIDS_BUILD Mat src = _src.getMat(); _dst.create( maxlevel + 1, 1, 0 ); _dst.getMatRef(0) = src; int i=1; { bool isolated = (borderType & BORDER_ISOLATED) != 0; int borderTypeNI = borderType & ~BORDER_ISOLATED; if (borderTypeNI == BORDER_DEFAULT && (!src.isSubmatrix() || isolated)) { typedef IppStatus (CV_STDCALL * ippiPyramidLayerDownInitAlloc)(void** ppState, IppiSize srcRoi, Ipp32f rate, void* pKernel, int kerSize, int mode); typedef IppStatus (CV_STDCALL * ippiPyramidLayerDown)(void* pSrc, int srcStep, IppiSize srcRoiSize, void* pDst, int dstStep, IppiSize dstRoiSize, void* pState); typedef IppStatus (CV_STDCALL * ippiPyramidLayerDownFree)(void* pState); int type = src.type(); int depth = src.depth(); ippiPyramidLayerDownInitAlloc pyrInitAllocFunc = 0; ippiPyramidLayerDown pyrDownFunc = 0; ippiPyramidLayerDownFree pyrFreeFunc = 0; if (type == CV_8UC1) { pyrInitAllocFunc = (ippiPyramidLayerDownInitAlloc) ippiPyramidLayerDownInitAlloc_8u_C1R; pyrDownFunc = (ippiPyramidLayerDown) ippiPyramidLayerDown_8u_C1R; pyrFreeFunc = (ippiPyramidLayerDownFree) ippiPyramidLayerDownFree_8u_C1R; } else if (type == CV_8UC3) { pyrInitAllocFunc = (ippiPyramidLayerDownInitAlloc) ippiPyramidLayerDownInitAlloc_8u_C3R; pyrDownFunc = (ippiPyramidLayerDown) ippiPyramidLayerDown_8u_C3R; pyrFreeFunc = (ippiPyramidLayerDownFree) ippiPyramidLayerDownFree_8u_C3R; } else if (type == CV_32FC1) { pyrInitAllocFunc = (ippiPyramidLayerDownInitAlloc) ippiPyramidLayerDownInitAlloc_32f_C1R; pyrDownFunc = (ippiPyramidLayerDown) ippiPyramidLayerDown_32f_C1R; pyrFreeFunc = (ippiPyramidLayerDownFree) ippiPyramidLayerDownFree_32f_C1R; } else if (type == CV_32FC3) { pyrInitAllocFunc = (ippiPyramidLayerDownInitAlloc) ippiPyramidLayerDownInitAlloc_32f_C3R; pyrDownFunc = (ippiPyramidLayerDown) ippiPyramidLayerDown_32f_C3R; pyrFreeFunc = (ippiPyramidLayerDownFree) ippiPyramidLayerDownFree_32f_C3R; } if (pyrInitAllocFunc && pyrDownFunc && pyrFreeFunc) { float rate = 2.f; IppiSize srcRoi = { src.cols, src.rows }; IppiPyramid *gPyr; IppStatus ok = ippiPyramidInitAlloc(&gPyr, maxlevel + 1, srcRoi, rate); Ipp16s iKernel[5] = { 1, 4, 6, 4, 1 }; Ipp32f fKernel[5] = { 1.f, 4.f, 6.f, 4.f, 1.f }; void* kernel = depth >= CV_32F ? (void*) fKernel : (void*) iKernel; if (ok >= 0) ok = pyrInitAllocFunc((void**) &(gPyr->pState), srcRoi, rate, kernel, 5, IPPI_INTER_LINEAR); if (ok >= 0) { gPyr->pImage[0] = src.data; gPyr->pStep[0] = (int) src.step; gPyr->pRoi[0] = srcRoi; for( ; i <= maxlevel; i++ ) { IppiSize dstRoi; ok = ippiGetPyramidDownROI(gPyr->pRoi[i-1], &dstRoi, rate); Mat& dst = _dst.getMatRef(i); dst.create(Size(dstRoi.width, dstRoi.height), type); gPyr->pImage[i] = dst.data; gPyr->pStep[i] = (int) dst.step; gPyr->pRoi[i] = dstRoi; if (ok >= 0) ok = pyrDownFunc(gPyr->pImage[i-1], gPyr->pStep[i-1], gPyr->pRoi[i-1], gPyr->pImage[i], gPyr->pStep[i], gPyr->pRoi[i], gPyr->pState); if (ok < 0) { pyrFreeFunc(gPyr->pState); return false; } else { CV_IMPL_ADD(CV_IMPL_IPP); } } pyrFreeFunc(gPyr->pState); } else { ippiPyramidFree(gPyr); return false; } ippiPyramidFree(gPyr); } return true; } return false; } #else CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(maxlevel); CV_UNUSED(borderType); #endif return false; } } #endif void cv::buildPyramid( InputArray _src, OutputArrayOfArrays _dst, int maxlevel, int borderType ) { CV_INSTRUMENT_REGION(); CV_Assert(borderType != BORDER_CONSTANT); if (_src.dims() <= 2 && _dst.isUMatVector()) { UMat src = _src.getUMat(); _dst.create( maxlevel + 1, 1, 0 ); _dst.getUMatRef(0) = src; for( int i = 1; i <= maxlevel; i++ ) pyrDown( _dst.getUMatRef(i-1), _dst.getUMatRef(i), Size(), borderType ); return; } Mat src = _src.getMat(); _dst.create( maxlevel + 1, 1, 0 ); _dst.getMatRef(0) = src; int i=1; CV_IPP_RUN(((IPP_VERSION_X100 >= 810) && ((borderType & ~BORDER_ISOLATED) == BORDER_DEFAULT && (!_src.isSubmatrix() || ((borderType & BORDER_ISOLATED) != 0)))), ipp_buildpyramid( _src, _dst, maxlevel, borderType)); for( ; i <= maxlevel; i++ ) pyrDown( _dst.getMatRef(i-1), _dst.getMatRef(i), Size(), borderType ); } CV_IMPL void cvPyrDown( const void* srcarr, void* dstarr, int _filter ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( _filter == CV_GAUSSIAN_5x5 && src.type() == dst.type()); cv::pyrDown( src, dst, dst.size() ); } CV_IMPL void cvPyrUp( const void* srcarr, void* dstarr, int _filter ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( _filter == CV_GAUSSIAN_5x5 && src.type() == dst.type()); cv::pyrUp( src, dst, dst.size() ); } CV_IMPL void cvReleasePyramid( CvMat*** _pyramid, int extra_layers ) { if( !_pyramid ) CV_Error( CV_StsNullPtr, "" ); if( *_pyramid ) for( int i = 0; i <= extra_layers; i++ ) cvReleaseMat( &(*_pyramid)[i] ); cvFree( _pyramid ); } CV_IMPL CvMat** cvCreatePyramid( const CvArr* srcarr, int extra_layers, double rate, const CvSize* layer_sizes, CvArr* bufarr, int calc, int filter ) { const float eps = 0.1f; uchar* ptr = 0; CvMat stub, *src = cvGetMat( srcarr, &stub ); if( extra_layers < 0 ) CV_Error( CV_StsOutOfRange, "The number of extra layers must be non negative" ); int i, layer_step, elem_size = CV_ELEM_SIZE(src->type); cv::Size layer_size, size = cvGetMatSize(src); if( bufarr ) { CvMat bstub, *buf; int bufsize = 0; buf = cvGetMat( bufarr, &bstub ); bufsize = buf->rows*buf->cols*CV_ELEM_SIZE(buf->type); layer_size = size; for( i = 1; i <= extra_layers; i++ ) { if( !layer_sizes ) { layer_size.width = cvRound(layer_size.width*rate+eps); layer_size.height = cvRound(layer_size.height*rate+eps); } else layer_size = layer_sizes[i-1]; layer_step = layer_size.width*elem_size; bufsize -= layer_step*layer_size.height; } if( bufsize < 0 ) CV_Error( CV_StsOutOfRange, "The buffer is too small to fit the pyramid" ); ptr = buf->data.ptr; } CvMat** pyramid = (CvMat**)cvAlloc( (extra_layers+1)*sizeof(pyramid[0]) ); memset( pyramid, 0, (extra_layers+1)*sizeof(pyramid[0]) ); pyramid[0] = cvCreateMatHeader( size.height, size.width, src->type ); cvSetData( pyramid[0], src->data.ptr, src->step ); layer_size = size; for( i = 1; i <= extra_layers; i++ ) { if( !layer_sizes ) { layer_size.width = cvRound(layer_size.width*rate + eps); layer_size.height = cvRound(layer_size.height*rate + eps); } else layer_size = layer_sizes[i]; if( bufarr ) { pyramid[i] = cvCreateMatHeader( layer_size.height, layer_size.width, src->type ); layer_step = layer_size.width*elem_size; cvSetData( pyramid[i], ptr, layer_step ); ptr += layer_step*layer_size.height; } else pyramid[i] = cvCreateMat( layer_size.height, layer_size.width, src->type ); if( calc ) cvPyrDown( pyramid[i-1], pyramid[i], filter ); //cvResize( pyramid[i-1], pyramid[i], CV_INTER_LINEAR ); } return pyramid; } /* End of file. */