/* dorglq.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; /* Subroutine */ int dorglq_(integer *m, integer *n, integer *k, doublereal * a, integer *lda, doublereal *tau, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo; extern /* Subroutine */ int dorgl2_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfb_(char *, char *, char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer ldwork, lwkopt; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DORGLQ generates an M-by-N real matrix Q with orthonormal rows, */ /* which is defined as the first M rows of a product of K elementary */ /* reflectors of order N */ /* Q = H(k) . . . H(2) H(1) */ /* as returned by DGELQF. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix Q. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q. N >= M. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* matrix Q. M >= K >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the i-th row must contain the vector which defines */ /* the elementary reflector H(i), for i = 1,2,...,k, as returned */ /* by DGELQF in the first k rows of its array argument A. */ /* On exit, the M-by-N matrix Q. */ /* LDA (input) INTEGER */ /* The first dimension of the array A. LDA >= max(1,M). */ /* TAU (input) DOUBLE PRECISION array, dimension (K) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by DGELQF. */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,M). */ /* For optimum performance LWORK >= M*NB, where NB is */ /* the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument has an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1); lwkopt = max(1,*m) * nb; work[1] = (doublereal) lwkopt; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*k < 0 || *k > *m) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*lwork < max(1,*m) && ! lquery) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("DORGLQ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m <= 0) { work[1] = 1.; return 0; } nbmin = 2; nx = 0; iws = *m; if (nb > 1 && nb < *k) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "DORGLQ", " ", m, n, k, &c_n1); nx = max(i__1,i__2); if (nx < *k) { /* Determine if workspace is large enough for blocked code. */ ldwork = *m; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and */ /* determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "DORGLQ", " ", m, n, k, &c_n1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < *k && nx < *k) { /* Use blocked code after the last block. */ /* The first kk rows are handled by the block method. */ ki = (*k - nx - 1) / nb * nb; /* Computing MIN */ i__1 = *k, i__2 = ki + nb; kk = min(i__1,i__2); /* Set A(kk+1:m,1:kk) to zero. */ i__1 = kk; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = kk + 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.; /* L10: */ } /* L20: */ } } else { kk = 0; } /* Use unblocked code for the last or only block. */ if (kk < *m) { i__1 = *m - kk; i__2 = *n - kk; i__3 = *k - kk; dorgl2_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, & tau[kk + 1], &work[1], &iinfo); } if (kk > 0) { /* Use blocked code */ i__1 = -nb; for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) { /* Computing MIN */ i__2 = nb, i__3 = *k - i__ + 1; ib = min(i__2,i__3); if (i__ + ib <= *m) { /* Form the triangular factor of the block reflector */ /* H = H(i) H(i+1) . . . H(i+ib-1) */ i__2 = *n - i__ + 1; dlarft_("Forward", "Rowwise", &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1], &ldwork); /* Apply H' to A(i+ib:m,i:n) from the right */ i__2 = *m - i__ - ib + 1; i__3 = *n - i__ + 1; dlarfb_("Right", "Transpose", "Forward", "Rowwise", &i__2, & i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], & ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib + 1], &ldwork); } /* Apply H' to columns i:n of current block */ i__2 = *n - i__ + 1; dorgl2_(&ib, &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], & work[1], &iinfo); /* Set columns 1:i-1 of current block to zero */ i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { i__3 = i__ + ib - 1; for (l = i__; l <= i__3; ++l) { a[l + j * a_dim1] = 0.; /* L30: */ } /* L40: */ } /* L50: */ } } work[1] = (doublereal) iws; return 0; /* End of DORGLQ */ } /* dorglq_ */