// WARNING: this sample is under construction! Use it on your own risk. #include #include #include #include #include #include #include using namespace std; using namespace cv; using namespace cv::gpu; void help() { cout << "Usage: ./cascadeclassifier \n" "Using OpenCV version " << CV_VERSION << endl << endl; } void DetectAndDraw(Mat& img, CascadeClassifier_GPU& cascade); String cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml"; String nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml"; template void convertAndResize(const T& src, T& gray, T& resized, double scale) { if (src.channels() == 3) { cvtColor( src, gray, CV_BGR2GRAY ); } else { gray = src; } Size sz(cvRound(gray.cols * scale), cvRound(gray.rows * scale)); if (scale != 1) { resize(gray, resized, sz); } else { resized = gray; } } void matPrint(Mat &img, int lineOffsY, Scalar fontColor, const ostringstream &ss) { int fontFace = FONT_HERSHEY_PLAIN; double fontScale = 1.5; int fontThickness = 2; Size fontSize = cv::getTextSize("T[]", fontFace, fontScale, fontThickness, 0); Point org; org.x = 1; org.y = 3 * fontSize.height * (lineOffsY + 1) / 2; putText(img, ss.str(), org, fontFace, fontScale, fontColor, fontThickness); } void displayState(Mat &canvas, bool bHelp, bool bGpu, bool bLargestFace, bool bFilter, double fps) { Scalar fontColorRed = CV_RGB(255,0,0); Scalar fontColorNV = CV_RGB(118,185,0); ostringstream ss; ss << "[" << canvas.cols << "x" << canvas.rows << "], " << (bGpu ? "GPU, " : "CPU, ") << (bLargestFace ? "OneFace, " : "MultiFace, ") << (bFilter ? "Filter:ON, " : "Filter:OFF, ") << "FPS = " << setprecision(1) << fixed << fps; matPrint(canvas, 0, fontColorRed, ss); if (bHelp) { matPrint(canvas, 1, fontColorNV, ostringstream("Space - switch GPU / CPU")); matPrint(canvas, 2, fontColorNV, ostringstream("M - switch OneFace / MultiFace")); matPrint(canvas, 3, fontColorNV, ostringstream("F - toggle rectangles Filter (only in MultiFace)")); matPrint(canvas, 4, fontColorNV, ostringstream("H - toggle hotkeys help")); matPrint(canvas, 5, fontColorNV, ostringstream("1/Q - increase/decrease scale")); } else { matPrint(canvas, 1, fontColorNV, ostringstream("H - toggle hotkeys help")); } } int main(int argc, const char *argv[]) { if (argc != 3) { return help(), -1; } if (getCudaEnabledDeviceCount() == 0) { return cerr << "No GPU found or the library is compiled without GPU support" << endl, -1; } VideoCapture capture; string cascadeName = argv[1]; string inputName = argv[2]; CascadeClassifier_GPU cascade_gpu; if (!cascade_gpu.load(cascadeName)) { return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1; } CascadeClassifier cascade_cpu; if (!cascade_cpu.load(cascadeName)) { return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1; } Mat image = imread(inputName); if (image.empty()) { if (!capture.open(inputName)) { int camid = 0; sscanf(inputName.c_str(), "%d", &camid); if (!capture.open(camid)) { cout << "Can't open source" << endl; return help(), -1; } } } namedWindow("result", 1); Mat frame, frame_cpu, gray_cpu, resized_cpu, faces_downloaded, frameDisp; vector facesBuf_cpu; GpuMat frame_gpu, gray_gpu, resized_gpu, facesBuf_gpu; /* parameters */ bool useGPU = true; double scaleFactor = 1.0; bool findLargestObject = false; bool filterRects = true; bool helpScreen = false; int detections_num; for (;;) { if (capture.isOpened()) { capture >> frame; if (frame.empty()) { break; } } (image.empty() ? frame : image).copyTo(frame_cpu); frame_gpu.upload(image.empty() ? frame : image); convertAndResize(frame_gpu, gray_gpu, resized_gpu, scaleFactor); convertAndResize(frame_cpu, gray_cpu, resized_cpu, scaleFactor); TickMeter tm; tm.start(); if (useGPU) { cascade_gpu.visualizeInPlace = true; cascade_gpu.findLargestObject = findLargestObject; detections_num = cascade_gpu.detectMultiScale(resized_gpu, facesBuf_gpu, 1.2, filterRects ? 4 : 0); facesBuf_gpu.colRange(0, detections_num).download(faces_downloaded); } else { Size minSize = cascade_gpu.getClassifierSize(); cascade_cpu.detectMultiScale(resized_cpu, facesBuf_cpu, 1.2, filterRects ? 4 : 0, (findLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) | CV_HAAR_SCALE_IMAGE, minSize); detections_num = (int)facesBuf_cpu.size(); } if (!useGPU) { if (detections_num) { for (int i = 0; i < detections_num; ++i) { rectangle(resized_cpu, facesBuf_cpu[i], Scalar(255)); } } } if (useGPU) { resized_gpu.download(resized_cpu); } tm.stop(); double detectionTime = tm.getTimeMilli(); double fps = 1000 / detectionTime; //print detections to console cout << setfill(' ') << setprecision(2); cout << setw(6) << fixed << fps << " FPS, " << detections_num << " det"; if ((filterRects || findLargestObject) && detections_num > 0) { Rect *faceRects = useGPU ? faces_downloaded.ptr() : &facesBuf_cpu[0]; for (int i = 0; i < min(detections_num, 2); ++i) { cout << ", [" << setw(4) << faceRects[i].x << ", " << setw(4) << faceRects[i].y << ", " << setw(4) << faceRects[i].width << ", " << setw(4) << faceRects[i].height << "]"; } } cout << endl; cvtColor(resized_cpu, frameDisp, CV_GRAY2BGR); displayState(frameDisp, helpScreen, useGPU, findLargestObject, filterRects, fps); imshow("result", frameDisp); int key = waitKey(5); if (key == 27) { break; } switch ((char)key) { case ' ': useGPU = !useGPU; break; case 'm': case 'M': findLargestObject = !findLargestObject; break; case 'f': case 'F': filterRects = !filterRects; break; case '1': scaleFactor *= 1.05; break; case 'q': case 'Q': scaleFactor /= 1.05; break; case 'h': case 'H': helpScreen = !helpScreen; break; } } return 0; }