#include #include #include #include #include #include using namespace cv; using namespace std; void get_svm_detector(const SVM& svm, vector< float > & hog_detector ); void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData ); void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst ); void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size ); Mat get_hogdescriptor_visu(Mat& color_origImg, vector& descriptorValues, const Size & size ); void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size ); void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels ); void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color ); void test_it( const Size & size ); void get_svm_detector(const SVM& svm, vector< float > & hog_detector ) { // get the number of variables const int var_all = svm.get_var_count(); // get the number of support vectors const int sv_total = svm.get_support_vector_count(); // get the decision function const CvSVMDecisionFunc* decision_func = svm.get_decision_function(); // get the support vectors const float** sv = new const float*[ sv_total ]; for( int i = 0 ; i < sv_total ; ++i ) sv[ i ] = svm.get_support_vector(i); CV_Assert( var_all > 0 && sv_total > 0 && decision_func != 0 && decision_func->alpha != 0 && decision_func->sv_count == sv_total ); float svi = 0.f; hog_detector.clear(); //clear stuff in vector. hog_detector.reserve( var_all + 1 ); //reserve place for memory efficiency. /** * hog_detector^i = \sum_j support_vector_j^i * \alpha_j * hog_detector^dim = -\rho */ for( int i = 0 ; i < var_all ; ++i ) { svi = 0.f; for( int j = 0 ; j < sv_total ; ++j ) { if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML. svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] ); else svi += (float)( sv[j][i] * decision_func->alpha[ j ] ); } hog_detector.push_back( svi ); } hog_detector.push_back( (float)-decision_func->rho ); delete[] sv; } /* * Convert training/testing set to be used by OpenCV Machine Learning algorithms. * TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1. * Transposition of samples are made if needed. */ void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData ) { //--Convert data const int rows = (int)train_samples.size(); const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows ); cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed trainData = cv::Mat(rows, cols, CV_32FC1 ); vector< Mat >::const_iterator itr = train_samples.begin(); vector< Mat >::const_iterator end = train_samples.end(); for( int i = 0 ; itr != end ; ++itr, ++i ) { CV_Assert( itr->cols == 1 || itr->rows == 1 ); if( itr->cols == 1 ) { transpose( *(itr), tmp ); tmp.copyTo( trainData.row( i ) ); } else if( itr->rows == 1 ) { itr->copyTo( trainData.row( i ) ); } } } void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst ) { string line; ifstream file; file.open( (prefix+filename).c_str() ); if( !file.is_open() ) { cerr << "Unable to open the list of images from " << filename << " filename." << endl; exit( -1 ); } bool end_of_parsing = false; while( !end_of_parsing ) { getline( file, line ); if( line == "" ) // no more file to read { end_of_parsing = true; break; } Mat img = imread( (prefix+line).c_str() ); // load the image if( !img.data ) // invalid image, just skip it. continue; #ifdef _DEBUG imshow( "image", img ); waitKey( 10 ); #endif img_lst.push_back( img.clone() ); } } void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size ) { Rect box; box.width = size.width; box.height = size.height; const int size_x = box.width; const int size_y = box.height; srand( (unsigned int)time( NULL ) ); vector< Mat >::const_iterator img = full_neg_lst.begin(); vector< Mat >::const_iterator end = full_neg_lst.end(); for( ; img != end ; ++img ) { box.x = rand() % (img->cols - size_x); box.y = rand() % (img->rows - size_y); Mat roi = (*img)(box); neg_lst.push_back( roi.clone() ); #ifdef _DEBUG imshow( "img", roi.clone() ); waitKey( 10 ); #endif } } // From http://www.juergenwiki.de/work/wiki/doku.php?id=public:hog_descriptor_computation_and_visualization Mat get_hogdescriptor_visu(Mat& color_origImg, vector& descriptorValues, const Size & size ) { const int DIMX = size.width; const int DIMY = size.height; float zoomFac = 3; Mat visu; resize(color_origImg, visu, Size( (int)(color_origImg.cols*zoomFac), (int)(color_origImg.rows*zoomFac) ) ); int cellSize = 8; int gradientBinSize = 9; float radRangeForOneBin = (float)(CV_PI/(float)gradientBinSize); // dividing 180° into 9 bins, how large (in rad) is one bin? // prepare data structure: 9 orientation / gradient strenghts for each cell int cells_in_x_dir = DIMX / cellSize; int cells_in_y_dir = DIMY / cellSize; float*** gradientStrengths = new float**[cells_in_y_dir]; int** cellUpdateCounter = new int*[cells_in_y_dir]; for (int y=0; y & img_lst, vector< Mat > & gradient_lst, const Size & size ) { HOGDescriptor hog; hog.winSize = size; Mat gray; vector< Point > location; vector< float > descriptors; vector< Mat >::const_iterator img = img_lst.begin(); vector< Mat >::const_iterator end = img_lst.end(); for( ; img != end ; ++img ) { cvtColor( *img, gray, COLOR_BGR2GRAY ); hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ), location ); gradient_lst.push_back( Mat( descriptors ).clone() ); #ifdef _DEBUG imshow( "gradient", get_hogdescriptor_visu( img->clone(), descriptors, size ) ); waitKey( 10 ); #endif } } void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels ) { SVM svm; /* Default values to train SVM */ SVMParams params; params.coef0 = 0.0; params.degree = 3; params.term_crit.epsilon = 1e-3; params.gamma = 0; params.kernel_type = SVM::LINEAR; params.nu = 0.5; params.p = 0.1; // for EPSILON_SVR, epsilon in loss function? params.C = 0.01; // From paper, soft classifier params.svm_type = SVM::EPS_SVR; // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task Mat train_data; convert_to_ml( gradient_lst, train_data ); clog << "Start training..."; svm.train( train_data, Mat( labels ), Mat(), Mat(), params ); clog << "...[done]" << endl; svm.save( "my_people_detector.yml" ); } void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color ) { if( !locations.empty() ) { vector< Rect >::const_iterator loc = locations.begin(); vector< Rect >::const_iterator end = locations.end(); for( ; loc != end ; ++loc ) { rectangle( img, *loc, color, 2 ); } } } void test_it( const Size & size ) { char key = 27; Scalar reference( 0, 255, 0 ); Scalar trained( 0, 0, 255 ); Mat img, draw; SVM svm; HOGDescriptor hog; HOGDescriptor my_hog; my_hog.winSize = size; VideoCapture video; vector< Rect > locations; // Load the trained SVM. svm.load( "my_people_detector.yml" ); // Set the trained svm to my_hog vector< float > hog_detector; get_svm_detector( svm, hog_detector ); my_hog.setSVMDetector( hog_detector ); // Set the people detector. hog.setSVMDetector( hog.getDefaultPeopleDetector() ); // Open the camera. video.open(0); if( !video.isOpened() ) { cerr << "Unable to open the device 0" << endl; exit( -1 ); } bool end_of_process = false; while( !end_of_process ) { video >> img; if( !img.data ) break; draw = img.clone(); locations.clear(); hog.detectMultiScale( img, locations ); draw_locations( draw, locations, reference ); locations.clear(); my_hog.detectMultiScale( img, locations ); draw_locations( draw, locations, trained ); imshow( "Video", draw ); key = (char)waitKey( 10 ); if( 27 == key ) end_of_process = true; } } int main( int argc, char** argv ) { if( argc != 4 ) { cout << "Wrong number of parameters." << endl << "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl << "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl; exit( -1 ); } vector< Mat > pos_lst; vector< Mat > full_neg_lst; vector< Mat > neg_lst; vector< Mat > gradient_lst; vector< int > labels; load_images( argv[1], argv[2], pos_lst ); labels.assign( pos_lst.size(), +1 ); const unsigned int old = (unsigned int)labels.size(); load_images( argv[3], argv[4], full_neg_lst ); sample_neg( full_neg_lst, neg_lst, Size( 96,160 ) ); labels.insert( labels.end(), neg_lst.size(), -1 ); CV_Assert( old < labels.size() ); compute_hog( pos_lst, gradient_lst, Size( 96, 160 ) ); compute_hog( neg_lst, gradient_lst, Size( 96, 160 ) ); train_svm( gradient_lst, labels ); test_it( Size( 96, 160 ) ); // change with your parameters return 0; }