/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_ML_PRECOMP_HPP__ #define __OPENCV_ML_PRECOMP_HPP__ #include "opencv2/core.hpp" #include "opencv2/ml.hpp" #include "opencv2/core/core_c.h" #include "opencv2/core/utility.hpp" #include "opencv2/core/private.hpp" #include #include #include #include #include #include #include #include #include /****************************************************************************************\ * Main struct definitions * \****************************************************************************************/ /* log(2*PI) */ #define CV_LOG2PI (1.8378770664093454835606594728112) namespace cv { namespace ml { using std::vector; #define CV_DTREE_CAT_DIR(idx,subset) \ (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1) template struct cmp_lt_idx { cmp_lt_idx(const _Tp* _arr) : arr(_arr) {} bool operator ()(int a, int b) const { return arr[a] < arr[b]; } const _Tp* arr; }; template struct cmp_lt_ptr { cmp_lt_ptr() {} bool operator ()(const _Tp* a, const _Tp* b) const { return *a < *b; } }; static inline void setRangeVector(std::vector& vec, int n) { vec.resize(n); for( int i = 0; i < n; i++ ) vec[i] = i; } static inline void writeTermCrit(FileStorage& fs, const TermCriteria& termCrit) { if( (termCrit.type & TermCriteria::EPS) != 0 ) fs << "epsilon" << termCrit.epsilon; if( (termCrit.type & TermCriteria::COUNT) != 0 ) fs << "iterations" << termCrit.maxCount; } static inline TermCriteria readTermCrit(const FileNode& fn) { TermCriteria termCrit; double epsilon = (double)fn["epsilon"]; if( epsilon > 0 ) { termCrit.type |= TermCriteria::EPS; termCrit.epsilon = epsilon; } int iters = (int)fn["iterations"]; if( iters > 0 ) { termCrit.type |= TermCriteria::COUNT; termCrit.maxCount = iters; } return termCrit; } class DTreesImpl : public DTrees { public: struct WNode { WNode() { class_idx = sample_count = depth = complexity = 0; parent = left = right = split = defaultDir = -1; Tn = INT_MAX; value = maxlr = alpha = node_risk = tree_risk = tree_error = 0.; } int class_idx; double Tn; double value; int parent; int left; int right; int defaultDir; int split; int sample_count; int depth; double maxlr; // global pruning data int complexity; double alpha; double node_risk, tree_risk, tree_error; }; struct WSplit { WSplit() { varIdx = next = 0; inversed = false; quality = c = 0.f; subsetOfs = -1; } int varIdx; bool inversed; float quality; int next; float c; int subsetOfs; }; struct WorkData { WorkData(const Ptr& _data); Ptr data; vector wnodes; vector wsplits; vector wsubsets; vector cv_Tn; vector cv_node_risk; vector cv_node_error; vector cv_labels; vector sample_weights; vector cat_responses; vector ord_responses; vector sidx; int maxSubsetSize; }; DTreesImpl(); virtual ~DTreesImpl(); virtual void clear(); String getDefaultModelName() const { return "opencv_ml_dtree"; } bool isTrained() const { return !roots.empty(); } bool isClassifier() const { return _isClassifier; } int getVarCount() const { return varType.empty() ? 0 : (int)(varType.size() - 1); } int getCatCount(int vi) const { return catOfs[vi][1] - catOfs[vi][0]; } int getSubsetSize(int vi) const { return (getCatCount(vi) + 31)/32; } virtual void setDParams(const Params& _params); virtual Params getDParams() const; virtual void startTraining( const Ptr& trainData, int flags ); virtual void endTraining(); virtual void initCompVarIdx(); virtual bool train( const Ptr& trainData, int flags ); virtual int addTree( const vector& sidx ); virtual int addNodeAndTrySplit( int parent, const vector& sidx ); virtual const vector& getActiveVars(); virtual int findBestSplit( const vector& _sidx ); virtual void calcValue( int nidx, const vector& _sidx ); virtual WSplit findSplitOrdClass( int vi, const vector& _sidx, double initQuality ); // simple k-means, slightly modified to take into account the "weight" (L1-norm) of each vector. virtual void clusterCategories( const double* vectors, int n, int m, double* csums, int k, int* labels ); virtual WSplit findSplitCatClass( int vi, const vector& _sidx, double initQuality, int* subset ); virtual WSplit findSplitOrdReg( int vi, const vector& _sidx, double initQuality ); virtual WSplit findSplitCatReg( int vi, const vector& _sidx, double initQuality, int* subset ); virtual int calcDir( int splitidx, const vector& _sidx, vector& _sleft, vector& _sright ); virtual int pruneCV( int root ); virtual double updateTreeRNC( int root, double T, int fold ); virtual bool cutTree( int root, double T, int fold, double min_alpha ); virtual float predictTrees( const Range& range, const Mat& sample, int flags ) const; virtual float predict( InputArray inputs, OutputArray outputs, int flags ) const; virtual void writeTrainingParams( FileStorage& fs ) const; virtual void writeParams( FileStorage& fs ) const; virtual void writeSplit( FileStorage& fs, int splitidx ) const; virtual void writeNode( FileStorage& fs, int nidx, int depth ) const; virtual void writeTree( FileStorage& fs, int root ) const; virtual void write( FileStorage& fs ) const; virtual void readParams( const FileNode& fn ); virtual int readSplit( const FileNode& fn ); virtual int readNode( const FileNode& fn ); virtual int readTree( const FileNode& fn ); virtual void read( const FileNode& fn ); virtual const std::vector& getRoots() const { return roots; } virtual const std::vector& getNodes() const { return nodes; } virtual const std::vector& getSplits() const { return splits; } virtual const std::vector& getSubsets() const { return subsets; } Params params0, params; vector varIdx; vector compVarIdx; vector varType; vector catOfs; vector catMap; vector roots; vector nodes; vector splits; vector subsets; vector classLabels; vector missingSubst; vector varMapping; bool _isClassifier; Ptr w; }; template static inline void readVectorOrMat(const FileNode & node, std::vector & v) { if (node.type() == FileNode::MAP) { Mat m; node >> m; m.copyTo(v); } else if (node.type() == FileNode::SEQ) { node >> v; } } }} #endif /* __OPENCV_ML_PRECOMP_HPP__ */