/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Guoping Long, longguoping@gmail.com // Niko Li, newlife20080214@gmail.com // Yao Wang, bitwangyaoyao@gmail.com // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include #include "cl_programcache.hpp" //#define PRINT_KERNEL_RUN_TIME #define RUN_TIMES 100 #ifndef CL_MEM_USE_PERSISTENT_MEM_AMD #define CL_MEM_USE_PERSISTENT_MEM_AMD 0 #endif //#define AMD_DOUBLE_DIFFER namespace cv { namespace ocl { DevMemType gDeviceMemType = DEVICE_MEM_DEFAULT; DevMemRW gDeviceMemRW = DEVICE_MEM_R_W; int gDevMemTypeValueMap[5] = {0, CL_MEM_ALLOC_HOST_PTR, CL_MEM_USE_HOST_PTR, CL_MEM_COPY_HOST_PTR, CL_MEM_USE_PERSISTENT_MEM_AMD}; int gDevMemRWValueMap[3] = {CL_MEM_READ_WRITE, CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY}; void finish() { clFinish(getClCommandQueue(Context::getContext())); } bool isCpuDevice() { const DeviceInfo& info = Context::getContext()->getDeviceInfo(); return (info.deviceType == CVCL_DEVICE_TYPE_CPU); } size_t queryWaveFrontSize(cl_kernel kernel) { const DeviceInfo& info = Context::getContext()->getDeviceInfo(); if (info.deviceType == CVCL_DEVICE_TYPE_CPU) return 1; size_t wavefront = 0; CV_Assert(kernel != NULL); openCLSafeCall(clGetKernelWorkGroupInfo(kernel, getClDeviceID(Context::getContext()), CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, sizeof(size_t), &wavefront, NULL)); return wavefront; } void openCLReadBuffer(Context *ctx, cl_mem dst_buffer, void *host_buffer, size_t size) { cl_int status; status = clEnqueueReadBuffer(getClCommandQueue(ctx), dst_buffer, CL_TRUE, 0, size, host_buffer, 0, NULL, NULL); openCLVerifyCall(status); } cl_mem openCLCreateBuffer(Context *ctx, size_t flag , size_t size) { cl_int status; cl_mem buffer = clCreateBuffer(getClContext(ctx), (cl_mem_flags)flag, size, NULL, &status); openCLVerifyCall(status); return buffer; } #define MEMORY_CORRUPTION_GUARD #ifdef MEMORY_CORRUPTION_GUARD //#define CHECK_MEMORY_CORRUPTION #define CHECK_MEMORY_CORRUPTION_PRINT_ERROR #define CHECK_MEMORY_CORRUPTION_RAISE_ERROR static const int __memory_corruption_guard_bytes = 64*1024; #ifdef CHECK_MEMORY_CORRUPTION static const int __memory_corruption_check_pattern = 0x14326547; // change pattern for sizeof(int)==8 #endif struct CheckBuffers { cl_mem mainBuffer; size_t size; size_t widthInBytes, height; CheckBuffers() : mainBuffer(NULL), size(0), widthInBytes(0), height(0) { // nothing } CheckBuffers(cl_mem _mainBuffer, size_t _size, size_t _widthInBytes, size_t _height) : mainBuffer(_mainBuffer), size(_size), widthInBytes(_widthInBytes), height(_height) { // nothing } }; static std::map __check_buffers; #endif void openCLMallocPitch(Context *ctx, void **dev_ptr, size_t *pitch, size_t widthInBytes, size_t height) { openCLMallocPitchEx(ctx, dev_ptr, pitch, widthInBytes, height, gDeviceMemRW, gDeviceMemType); } void openCLMallocPitchEx(Context *ctx, void **dev_ptr, size_t *pitch, size_t widthInBytes, size_t height, DevMemRW rw_type, DevMemType mem_type) { cl_int status; size_t size = widthInBytes * height; bool useSubBuffers = #ifndef MEMORY_CORRUPTION_GUARD false; #else true; #endif const DeviceInfo& devInfo = ctx->getDeviceInfo(); if (useSubBuffers && devInfo.isIntelDevice) { useSubBuffers = false; // TODO FIXIT We observe memory leaks then we working with sub-buffers // on the CPU device of Intel OpenCL SDK (Linux). We will investigate this later. } if (!useSubBuffers) { *dev_ptr = clCreateBuffer(getClContext(ctx), gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type], size, 0, &status); openCLVerifyCall(status); } #ifdef MEMORY_CORRUPTION_GUARD else { size_t allocSize = size + __memory_corruption_guard_bytes * 2; cl_mem mainBuffer = clCreateBuffer(getClContext(ctx), gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type], allocSize, 0, &status); openCLVerifyCall(status); cl_buffer_region r = {__memory_corruption_guard_bytes, size}; *dev_ptr = clCreateSubBuffer(mainBuffer, gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type], CL_BUFFER_CREATE_TYPE_REGION, &r, &status); openCLVerifyCall(status); #ifdef CHECK_MEMORY_CORRUPTION std::vector tmp(__memory_corruption_guard_bytes / sizeof(int), __memory_corruption_check_pattern); CV_Assert(tmp.size() * sizeof(int) == __memory_corruption_guard_bytes); openCLVerifyCall(clEnqueueWriteBuffer(getClCommandQueue(ctx), mainBuffer, CL_FALSE, 0, __memory_corruption_guard_bytes, &tmp[0], 0, NULL, NULL)); openCLVerifyCall(clEnqueueWriteBuffer(getClCommandQueue(ctx), mainBuffer, CL_FALSE, __memory_corruption_guard_bytes + size, __memory_corruption_guard_bytes, &tmp[0], 0, NULL, NULL)); clFinish(getClCommandQueue(ctx)); #endif CheckBuffers data(mainBuffer, size, widthInBytes, height); cv::AutoLock lock(getInitializationMutex()); __check_buffers.insert(std::pair((cl_mem)*dev_ptr, data)); } #endif *pitch = widthInBytes; } void openCLMemcpy2D(Context *ctx, void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, openCLMemcpyKind kind, int channels) { size_t buffer_origin[3] = {0, 0, 0}; size_t host_origin[3] = {0, 0, 0}; size_t region[3] = {width, height, 1}; if(kind == clMemcpyHostToDevice) { if(dpitch == width || channels == 3 || height == 1) { openCLSafeCall(clEnqueueWriteBuffer(getClCommandQueue(ctx), (cl_mem)dst, CL_TRUE, 0, width * height, src, 0, NULL, NULL)); } else { openCLSafeCall(clEnqueueWriteBufferRect(getClCommandQueue(ctx), (cl_mem)dst, CL_TRUE, buffer_origin, host_origin, region, dpitch, 0, spitch, 0, src, 0, 0, 0)); } } else if(kind == clMemcpyDeviceToHost) { if(spitch == width || channels == 3 || height == 1) { openCLSafeCall(clEnqueueReadBuffer(getClCommandQueue(ctx), (cl_mem)src, CL_TRUE, 0, width * height, dst, 0, NULL, NULL)); } else { openCLSafeCall(clEnqueueReadBufferRect(getClCommandQueue(ctx), (cl_mem)src, CL_TRUE, buffer_origin, host_origin, region, spitch, 0, dpitch, 0, dst, 0, 0, 0)); } } } void openCLCopyBuffer2D(Context *ctx, void *dst, size_t dpitch, int dst_offset, const void *src, size_t spitch, size_t width, size_t height, int src_offset) { size_t src_origin[3] = {src_offset % spitch, src_offset / spitch, 0}; size_t dst_origin[3] = {dst_offset % dpitch, dst_offset / dpitch, 0}; size_t region[3] = {width, height, 1}; openCLSafeCall(clEnqueueCopyBufferRect(getClCommandQueue(ctx), (cl_mem)src, (cl_mem)dst, src_origin, dst_origin, region, spitch, 0, dpitch, 0, 0, 0, 0)); } void openCLFree(void *devPtr) { openCLSafeCall(clReleaseMemObject((cl_mem)devPtr)); #ifdef MEMORY_CORRUPTION_GUARD #ifdef CHECK_MEMORY_CORRUPTION bool failBefore = false, failAfter = false; #endif CheckBuffers data; { cv::AutoLock lock(getInitializationMutex()); std::map::iterator i = __check_buffers.find((cl_mem)devPtr); if (i != __check_buffers.end()) { data = i->second; __check_buffers.erase(i); } } if (data.mainBuffer != NULL) { #ifdef CHECK_MEMORY_CORRUPTION Context* ctx = Context::getContext(); std::vector checkBefore(__memory_corruption_guard_bytes); std::vector checkAfter(__memory_corruption_guard_bytes); openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(ctx), data.mainBuffer, CL_FALSE, 0, __memory_corruption_guard_bytes, &checkBefore[0], 0, NULL, NULL)); openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(ctx), data.mainBuffer, CL_FALSE, __memory_corruption_guard_bytes + data.size, __memory_corruption_guard_bytes, &checkAfter[0], 0, NULL, NULL)); clFinish(getClCommandQueue(ctx)); std::vector tmp(__memory_corruption_guard_bytes / sizeof(int), __memory_corruption_check_pattern); if (memcmp(&checkBefore[0], &tmp[0], __memory_corruption_guard_bytes) != 0) { failBefore = true; } if (memcmp(&checkAfter[0], &tmp[0], __memory_corruption_guard_bytes) != 0) { failAfter = true; } #else // TODO FIXIT Attach clReleaseMemObject call to event completion callback // TODO 2013/12/04 Disable workaround // Context* ctx = Context::getContext(); // clFinish(getClCommandQueue(ctx)); #endif openCLSafeCall(clReleaseMemObject(data.mainBuffer)); } #if defined(CHECK_MEMORY_CORRUPTION) if (failBefore) { #ifdef CHECK_MEMORY_CORRUPTION_PRINT_ERROR std::cerr << "ERROR: Memory corruption detected: before buffer: " << cv::format("widthInBytes=%d height=%d", (int)data.widthInBytes, (int)data.height) << std::endl; #endif #ifdef CHECK_MEMORY_CORRUPTION_RAISE_ERROR CV_Error(CV_StsInternal, "Memory corruption detected: before buffer"); #endif } if (failAfter) { #ifdef CHECK_MEMORY_CORRUPTION_PRINT_ERROR std::cerr << "ERROR: Memory corruption detected: after buffer: " << cv::format("widthInBytes=%d height=%d", (int)data.widthInBytes, (int)data.height) << std::endl; #endif #ifdef CHECK_MEMORY_CORRUPTION_RAISE_ERROR CV_Error(CV_StsInternal, "Memory corruption detected: after buffer"); #endif } #endif // CHECK_MEMORY_CORRUPTION #endif // MEMORY_CORRUPTION_GUARD } cl_kernel openCLGetKernelFromSource(const Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName) { return openCLGetKernelFromSource(ctx, source, kernelName, NULL); } cl_kernel openCLGetKernelFromSource(const Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, const char *build_options) { cl_kernel kernel; cl_int status = 0; CV_Assert(ProgramCache::getProgramCache() != NULL); cl_program program = ProgramCache::getProgramCache()->getProgram(ctx, source, build_options); CV_Assert(program != NULL); kernel = clCreateKernel(program, kernelName.c_str(), &status); openCLVerifyCall(status); openCLVerifyCall(clReleaseProgram(program)); return kernel; } void openCLVerifyKernel(const Context *ctx, cl_kernel kernel, size_t *localThreads) { size_t kernelWorkGroupSize; openCLSafeCall(clGetKernelWorkGroupInfo(kernel, getClDeviceID(ctx), CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &kernelWorkGroupSize, 0)); CV_Assert( localThreads[0] <= ctx->getDeviceInfo().maxWorkItemSizes[0] ); CV_Assert( localThreads[1] <= ctx->getDeviceInfo().maxWorkItemSizes[1] ); CV_Assert( localThreads[2] <= ctx->getDeviceInfo().maxWorkItemSizes[2] ); CV_Assert( localThreads[0] * localThreads[1] * localThreads[2] <= kernelWorkGroupSize ); CV_Assert( localThreads[0] * localThreads[1] * localThreads[2] <= ctx->getDeviceInfo().maxWorkGroupSize ); } #ifdef PRINT_KERNEL_RUN_TIME static double total_execute_time = 0; static double total_kernel_time = 0; #endif static std::string removeDuplicatedWhiteSpaces(const char * buildOptions) { if (buildOptions == NULL) return ""; size_t length = strlen(buildOptions), didx = 0, sidx = 0; while (sidx < length && buildOptions[sidx] == 0) ++sidx; std::string opt; opt.resize(length); for ( ; sidx < length; ++sidx) if (buildOptions[sidx] != ' ') opt[didx++] = buildOptions[sidx]; else if ( !(didx > 0 && opt[didx - 1] == ' ') ) opt[didx++] = buildOptions[sidx]; return opt; } cl_kernel openCLGetKernelFromSource(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, int channels, int depth, const char *build_options) { //construct kernel name //The rule is functionName_Cn_Dn, C represent Channels, D Represent DataType Depth, n represent an integer number //for example split_C2_D3, represent the split kernel with channels = 2 and dataType Depth = 3(Data type is short) stringstream idxStr; if(channels != -1) idxStr << "_C" << channels; if(depth != -1) idxStr << "_D" << depth; kernelName += idxStr.str(); std::string fixedOptions = removeDuplicatedWhiteSpaces(build_options); cl_kernel kernel = openCLGetKernelFromSource(ctx, source, kernelName, fixedOptions.c_str()); return kernel; } void openCLExecuteKernel(Context *ctx, cl_kernel kernel, size_t globalThreads[3], size_t localThreads[3], vector< pair > &args) { if ( localThreads != NULL) { globalThreads[0] = roundUp(globalThreads[0], localThreads[0]); globalThreads[1] = roundUp(globalThreads[1], localThreads[1]); globalThreads[2] = roundUp(globalThreads[2], localThreads[2]); cv::ocl::openCLVerifyKernel(ctx, kernel, localThreads); } for(size_t i = 0; i < args.size(); i ++) openCLSafeCall(clSetKernelArg(kernel, i, args[i].first, args[i].second)); #ifndef PRINT_KERNEL_RUN_TIME openCLSafeCall(clEnqueueNDRangeKernel(getClCommandQueue(ctx), kernel, 3, NULL, globalThreads, localThreads, 0, NULL, NULL)); #else cl_event event = NULL; openCLSafeCall(clEnqueueNDRangeKernel(getClCommandQueue(ctx), kernel, 3, NULL, globalThreads, localThreads, 0, NULL, &event)); cl_ulong start_time, end_time, queue_time; double execute_time = 0; double total_time = 0; openCLSafeCall(clWaitForEvents(1, &event)); openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start_time, 0)); openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end_time, 0)); openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &queue_time, 0)); execute_time = (double)(end_time - start_time) / (1000 * 1000); total_time = (double)(end_time - queue_time) / (1000 * 1000); total_execute_time += execute_time; total_kernel_time += total_time; clReleaseEvent(event); #endif clFlush(getClCommandQueue(ctx)); openCLSafeCall(clReleaseKernel(kernel)); } void openCLExecuteKernel_(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, size_t globalThreads[3], size_t localThreads[3], vector< pair > &args, int channels, int depth, const char *build_options) { cl_kernel kernel = openCLGetKernelFromSource(ctx, source, kernelName, channels, depth, build_options); openCLExecuteKernel(ctx, kernel, globalThreads, localThreads, args); } void openCLExecuteKernel(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, size_t globalThreads[3], size_t localThreads[3], vector< pair > &args, int channels, int depth) { openCLExecuteKernel(ctx, source, kernelName, globalThreads, localThreads, args, channels, depth, NULL); } void openCLExecuteKernel(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, size_t globalThreads[3], size_t localThreads[3], vector< pair > &args, int channels, int depth, const char *build_options) { #ifndef PRINT_KERNEL_RUN_TIME openCLExecuteKernel_(ctx, source, kernelName, globalThreads, localThreads, args, channels, depth, build_options); #else string data_type[] = { "uchar", "char", "ushort", "short", "int", "float", "double"}; cout << endl; cout << "Function Name: " << kernelName; if(depth >= 0) cout << " |data type: " << data_type[depth]; cout << " |channels: " << channels; cout << " |Time Unit: " << "ms" << endl; total_execute_time = 0; total_kernel_time = 0; cout << "-------------------------------------" << endl; cout << setiosflags(ios::left) << setw(15) << "execute time"; cout << setiosflags(ios::left) << setw(15) << "launch time"; cout << setiosflags(ios::left) << setw(15) << "kernel time" << endl; int i = 0; for(i = 0; i < RUN_TIMES; i++) openCLExecuteKernel_(ctx, source, kernelName, globalThreads, localThreads, args, channels, depth, build_options); cout << "average kernel execute time: " << total_execute_time / RUN_TIMES << endl; // "ms" << endl; cout << "average kernel total time: " << total_kernel_time / RUN_TIMES << endl; // "ms" << endl; #endif } void openCLExecuteKernelInterop(Context *ctx, const cv::ocl::ProgramSource& source, string kernelName, size_t globalThreads[3], size_t localThreads[3], vector< pair > &args, int channels, int depth, const char *build_options) { //construct kernel name //The rule is functionName_Cn_Dn, C represent Channels, D Represent DataType Depth, n represent an integer number //for example split_C2_D2, represent the split kernel with channels = 2 and dataType Depth = 2 (Data type is char) stringstream idxStr; if(channels != -1) idxStr << "_C" << channels; if(depth != -1) idxStr << "_D" << depth; kernelName += idxStr.str(); std::string name = std::string("custom_") + source.name; ProgramEntry program = { name.c_str(), source.programStr, source.programHash }; cl_kernel kernel = openCLGetKernelFromSource(ctx, &program, kernelName, build_options); CV_Assert(globalThreads != NULL); if ( localThreads != NULL) { globalThreads[0] = roundUp(globalThreads[0], localThreads[0]); globalThreads[1] = roundUp(globalThreads[1], localThreads[1]); globalThreads[2] = roundUp(globalThreads[2], localThreads[2]); cv::ocl::openCLVerifyKernel(ctx, kernel, localThreads); } for(size_t i = 0; i < args.size(); i ++) openCLSafeCall(clSetKernelArg(kernel, i, args[i].first, args[i].second)); openCLSafeCall(clEnqueueNDRangeKernel(getClCommandQueue(ctx), kernel, 3, NULL, globalThreads, localThreads, 0, NULL, NULL)); clFinish(getClCommandQueue(ctx)); openCLSafeCall(clReleaseKernel(kernel)); } cl_mem load_constant(cl_context context, cl_command_queue command_queue, const void *value, const size_t size) { int status; cl_mem con_struct; con_struct = clCreateBuffer(context, CL_MEM_READ_ONLY, size, NULL, &status); openCLSafeCall(status); openCLSafeCall(clEnqueueWriteBuffer(command_queue, con_struct, 1, 0, size, value, 0, 0, 0)); return con_struct; } }//namespace ocl }//namespace cv