// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include "npy_blob.hpp" #include #include namespace opencv_test { namespace { testing::internal::ParamGenerator< tuple > dnnBackendsAndTargetsInt8() { std::vector< tuple > targets; targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)); #ifdef HAVE_TIMVX targets.push_back(make_tuple(DNN_BACKEND_TIMVX, DNN_TARGET_NPU)); #endif #ifdef HAVE_INF_ENGINE targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, DNN_TARGET_CPU)); #endif return testing::ValuesIn(targets); } template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "dnn/") + filename; } class Test_Int8_layers : public DNNTestLayer { public: void testLayer(const String& basename, const String& importer, double l1, double lInf, int numInps = 1, int numOuts = 1, bool useCaffeModel = false, bool useCommonInputBlob = true, bool hasText = false, bool perChannel = true) { CV_Assert_N(numInps >= 1, numInps <= 10, numOuts >= 1, numOuts <= 10); std::vector inps(numInps), inps_int8(numInps); std::vector refs(numOuts), outs_int8(numOuts), outs_dequantized(numOuts); std::vector inputScale, outputScale; std::vector inputZp, outputZp; String inpPath, outPath; Net net, qnet; if (importer == "Caffe") { String prototxt = _tf("layers/" + basename + ".prototxt"); String caffemodel = _tf("layers/" + basename + ".caffemodel"); net = readNetFromCaffe(prototxt, useCaffeModel ? caffemodel : String()); inpPath = _tf("layers/" + (useCommonInputBlob ? "blob" : basename + ".input")); outPath = _tf("layers/" + basename); } else if (importer == "TensorFlow") { String netPath = _tf("tensorflow/" + basename + "_net.pb"); String netConfig = hasText ? _tf("tensorflow/" + basename + "_net.pbtxt") : ""; net = readNetFromTensorflow(netPath, netConfig); inpPath = _tf("tensorflow/" + basename + "_in"); outPath = _tf("tensorflow/" + basename + "_out"); } else if (importer == "ONNX") { String onnxmodel = _tf("onnx/models/" + basename + ".onnx"); net = readNetFromONNX(onnxmodel); inpPath = _tf("onnx/data/input_" + basename); outPath = _tf("onnx/data/output_" + basename); } ASSERT_FALSE(net.empty()); for (int i = 0; i < numInps; i++) inps[i] = blobFromNPY(inpPath + ((numInps > 1) ? cv::format("_%d.npy", i) : ".npy")); for (int i = 0; i < numOuts; i++) refs[i] = blobFromNPY(outPath + ((numOuts > 1) ? cv::format("_%d.npy", i) : ".npy")); qnet = net.quantize(inps, CV_8S, CV_8S, perChannel); qnet.getInputDetails(inputScale, inputZp); qnet.getOutputDetails(outputScale, outputZp); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); // Quantize inputs to int8 // int8_value = float_value/scale + zero-point for (int i = 0; i < numInps; i++) { inps[i].convertTo(inps_int8[i], CV_8S, 1.f/inputScale[i], inputZp[i]); String inp_name = numInps > 1 ? (importer == "Caffe" ? cv::format("input_%d", i) : cv::format("%d", i)) : ""; qnet.setInput(inps_int8[i], inp_name); } qnet.forward(outs_int8); // Dequantize outputs and compare with reference outputs // float_value = scale*(int8_value - zero-point) for (int i = 0; i < numOuts; i++) { outs_int8[i].convertTo(outs_dequantized[i], CV_32F, outputScale[i], -(outputScale[i] * outputZp[i])); normAssert(refs[i], outs_dequantized[i], basename.c_str(), l1, lInf); } } }; TEST_P(Test_Int8_layers, Convolution1D) { testLayer("conv1d", "ONNX", 0.00302, 0.00909); testLayer("conv1d_bias", "ONNX", 0.00306, 0.00948); { SCOPED_TRACE("Per-tensor quantize"); testLayer("conv1d", "ONNX", 0.00302, 0.00909, 1, 1, false, true, false, false); testLayer("conv1d_bias", "ONNX", 0.00319, 0.00948, 1, 1, false, true, false, false); } } TEST_P(Test_Int8_layers, Convolution2D) { if(backend == DNN_BACKEND_TIMVX) testLayer("single_conv", "TensorFlow", 0.00424, 0.02201); else testLayer("single_conv", "TensorFlow", 0.00413, 0.02201); testLayer("atrous_conv2d_valid", "TensorFlow", 0.0193, 0.0633); testLayer("atrous_conv2d_same", "TensorFlow", 0.0185, 0.1322); testLayer("keras_atrous_conv2d_same", "TensorFlow", 0.0056, 0.0244); if(backend == DNN_BACKEND_TIMVX) testLayer("convolution", "ONNX", 0.00534, 0.01516); else testLayer("convolution", "ONNX", 0.0052, 0.01516); if(backend == DNN_BACKEND_TIMVX) testLayer("two_convolution", "ONNX", 0.0033, 0.01); else testLayer("two_convolution", "ONNX", 0.00295, 0.00840); if(backend == DNN_BACKEND_TIMVX) applyTestTag(CV_TEST_TAG_DNN_SKIP_TIMVX); testLayer("layer_convolution", "Caffe", 0.0174, 0.0758, 1, 1, true); testLayer("depthwise_conv2d", "TensorFlow", 0.0388, 0.169); { SCOPED_TRACE("Per-tensor quantize"); testLayer("single_conv", "TensorFlow", 0.00413, 0.02301, 1, 1, false, true, false, false); testLayer("atrous_conv2d_valid", "TensorFlow", 0.027967, 0.07808, 1, 1, false, true, false, false); testLayer("atrous_conv2d_same", "TensorFlow", 0.01945, 0.1322, 1, 1, false, true, false, false); testLayer("keras_atrous_conv2d_same", "TensorFlow", 0.005677, 0.03327, 1, 1, false, true, false, false); testLayer("convolution", "ONNX", 0.00538, 0.01517, 1, 1, false, true, false, false); testLayer("two_convolution", "ONNX", 0.00295, 0.00926, 1, 1, false, true, false, false); testLayer("layer_convolution", "Caffe", 0.0175, 0.0759, 1, 1, true, true, false, false); testLayer("depthwise_conv2d", "TensorFlow", 0.041847, 0.18744, 1, 1, false, true, false, false); } } TEST_P(Test_Int8_layers, Convolution3D) { testLayer("conv3d", "TensorFlow", 0.00734, 0.02434); testLayer("conv3d", "ONNX", 0.00353, 0.00941); testLayer("conv3d_bias", "ONNX", 0.00129, 0.00249); } TEST_P(Test_Int8_layers, Flatten) { testLayer("flatten", "TensorFlow", 0.0036, 0.0069, 1, 1, false, true, true); testLayer("unfused_flatten", "TensorFlow", 0.0014, 0.0028); testLayer("unfused_flatten_unknown_batch", "TensorFlow", 0.0043, 0.0051); { SCOPED_TRACE("Per-tensor quantize"); testLayer("conv3d", "TensorFlow", 0.00734, 0.02434, 1, 1, false, true, false, false); testLayer("conv3d", "ONNX", 0.00377, 0.01362, 1, 1, false, true, false, false); testLayer("conv3d_bias", "ONNX", 0.00201, 0.0039, 1, 1, false, true, false, false); } } TEST_P(Test_Int8_layers, Padding) { if (backend == DNN_BACKEND_TIMVX) testLayer("padding_valid", "TensorFlow", 0.0292, 0.0105); else testLayer("padding_valid", "TensorFlow", 0.0026, 0.0064); if (backend == DNN_BACKEND_TIMVX) testLayer("padding_same", "TensorFlow", 0.0085, 0.032); else testLayer("padding_same", "TensorFlow", 0.0081, 0.032); if (backend == DNN_BACKEND_TIMVX) testLayer("spatial_padding", "TensorFlow", 0.0079, 0.028); else testLayer("spatial_padding", "TensorFlow", 0.0078, 0.028); testLayer("mirror_pad", "TensorFlow", 0.0064, 0.013); testLayer("pad_and_concat", "TensorFlow", 0.0021, 0.0098); testLayer("padding", "ONNX", 0.0005, 0.0069); testLayer("ReflectionPad2d", "ONNX", 0.00062, 0.0018); testLayer("ZeroPad2d", "ONNX", 0.00037, 0.0018); } TEST_P(Test_Int8_layers, AvePooling) { // Some tests failed with OpenVINO due to wrong padded area calculation if (backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) testLayer("layer_pooling_ave", "Caffe", 0.0021, 0.0075); testLayer("ave_pool_same", "TensorFlow", 0.00153, 0.0041); testLayer("average_pooling_1d", "ONNX", 0.002, 0.0048); if (backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) testLayer("average_pooling", "ONNX", 0.0014, 0.0032); testLayer("average_pooling_dynamic_axes", "ONNX", 0.0014, 0.006); if (target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); testLayer("ave_pool3d", "TensorFlow", 0.00175, 0.0047); testLayer("ave_pool3d", "ONNX", 0.00063, 0.0016); } TEST_P(Test_Int8_layers, MaxPooling) { testLayer("pool_conv_1d", "ONNX", 0.0006, 0.0015); if (target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); testLayer("pool_conv_3d", "ONNX", 0.0033, 0.0124); testLayer("layer_pooling_max", "Caffe", 0.0021, 0.004); testLayer("max_pool_even", "TensorFlow", 0.0048, 0.0139); testLayer("max_pool_odd_valid", "TensorFlow", 0.0043, 0.012); testLayer("conv_pool_nchw", "TensorFlow", 0.007, 0.025); testLayer("max_pool3d", "TensorFlow", 0.0025, 0.0058); testLayer("maxpooling_1d", "ONNX", 0.0018, 0.0037); testLayer("two_maxpooling_1d", "ONNX", 0.0037, 0.0052); testLayer("maxpooling", "ONNX", 0.0034, 0.0065); testLayer("two_maxpooling", "ONNX", 0.0025, 0.0052); testLayer("max_pool3d", "ONNX", 0.0028, 0.0069); } TEST_P(Test_Int8_layers, Reduce) { testLayer("reduce_mean", "TensorFlow", 0.0005, 0.0014); testLayer("reduce_mean", "ONNX", 0.00062, 0.0014); testLayer("reduce_mean_axis1", "ONNX", 0.00032, 0.0007); testLayer("reduce_mean_axis2", "ONNX", 0.00033, 0.001); testLayer("reduce_sum", "TensorFlow", 0.015, 0.031); testLayer("reduce_sum_channel", "TensorFlow", 0.008, 0.019); testLayer("sum_pool_by_axis", "TensorFlow", 0.012, 0.032); testLayer("reduce_sum", "ONNX", 0.0025, 0.0048); testLayer("reduce_max", "ONNX", 0, 0); testLayer("reduce_max_axis_0", "ONNX", 0.0042, 0.007); testLayer("reduce_max_axis_1", "ONNX", 0.0018, 0.0036); if (target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); testLayer("reduce_mean3d", "ONNX", 0.00048, 0.0016); } TEST_P(Test_Int8_layers, ReLU) { testLayer("layer_relu", "Caffe", 0.0005, 0.002); testLayer("ReLU", "ONNX", 0.0012, 0.0047); } TEST_P(Test_Int8_layers, LeakyReLU) { testLayer("leaky_relu", "TensorFlow", 0.0002, 0.0004); } TEST_P(Test_Int8_layers, ReLU6) { testLayer("keras_relu6", "TensorFlow", 0.0018, 0.0062); testLayer("keras_relu6", "TensorFlow", 0.0018, 0.0062, 1, 1, false, true, true); testLayer("clip_by_value", "TensorFlow", 0.0009, 0.002); testLayer("clip", "ONNX", 0.00006, 0.00037); } TEST_P(Test_Int8_layers, Sigmoid) { testLayer("maxpooling_sigmoid", "ONNX", 0.0011, 0.0032); } TEST_P(Test_Int8_layers, Sigmoid_dynamic_axes) { testLayer("maxpooling_sigmoid_dynamic_axes", "ONNX", 0.002, 0.0032); } TEST_P(Test_Int8_layers, Sigmoid_1d) { testLayer("maxpooling_sigmoid_1d", "ONNX", 0.002, 0.0037); } TEST_P(Test_Int8_layers, Mish) { testLayer("mish", "ONNX", 0.0015, 0.0025); } TEST_P(Test_Int8_layers, Softmax_Caffe) { testLayer("layer_softmax", "Caffe", 0.0011, 0.0036); } TEST_P(Test_Int8_layers, Softmax_keras_TF) { testLayer("keras_softmax", "TensorFlow", 0.00093, 0.0027); } TEST_P(Test_Int8_layers, Softmax_slim_TF) { testLayer("slim_softmax", "TensorFlow", 0.0016, 0.0034); } TEST_P(Test_Int8_layers, Softmax_slim_v2_TF) { testLayer("slim_softmax_v2", "TensorFlow", 0.0029, 0.017); } TEST_P(Test_Int8_layers, Softmax_ONNX) { testLayer("softmax", "ONNX", 0.0016, 0.0028); } TEST_P(Test_Int8_layers, Softmax_log_ONNX) { testLayer("log_softmax", "ONNX", 0.014, 0.025); } TEST_P(Test_Int8_layers, DISABLED_Softmax_unfused_ONNX) // FIXIT Support 'Identity' layer for outputs (#22022) { testLayer("softmax_unfused", "ONNX", 0.0009, 0.0021); } TEST_P(Test_Int8_layers, Concat) { testLayer("layer_concat_shared_input", "Caffe", 0.0076, 0.029, 1, 1, true, false); if (backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { // Crashes with segfault testLayer("concat_axis_1", "TensorFlow", 0.0056, 0.017); } testLayer("keras_pad_concat", "TensorFlow", 0.0032, 0.0089); testLayer("concat_3d", "TensorFlow", 0.005, 0.014); testLayer("concatenation", "ONNX", 0.0032, 0.009); } TEST_P(Test_Int8_layers, BatchNorm) { testLayer("layer_batch_norm", "Caffe", 0.0061, 0.019, 1, 1, true); testLayer("fused_batch_norm", "TensorFlow", 0.0063, 0.02); testLayer("batch_norm_text", "TensorFlow", 0.0048, 0.013, 1, 1, false, true, true); testLayer("unfused_batch_norm", "TensorFlow", 0.0076, 0.019); testLayer("fused_batch_norm_no_gamma", "TensorFlow", 0.0067, 0.015); testLayer("unfused_batch_norm_no_gamma", "TensorFlow", 0.0123, 0.044); testLayer("switch_identity", "TensorFlow", 0.0035, 0.011); testLayer("batch_norm3d", "TensorFlow", 0.0077, 0.02); testLayer("batch_norm", "ONNX", 0.0012, 0.0049); testLayer("batch_norm_3d", "ONNX", 0.0039, 0.012); testLayer("frozenBatchNorm2d", "ONNX", 0.001, 0.0018); testLayer("batch_norm_subgraph", "ONNX", 0.0049, 0.0098); } TEST_P(Test_Int8_layers, Scale) { testLayer("batch_norm", "TensorFlow", 0.0028, 0.0098); testLayer("scale", "ONNX", 0.0025, 0.0071); testLayer("expand_hw", "ONNX", 0.0012, 0.0012); testLayer("flatten_const", "ONNX", 0.0024, 0.0048); } TEST_P(Test_Int8_layers, InnerProduct) { testLayer("layer_inner_product", "Caffe", 0.005, 0.02, 1, 1, true); testLayer("matmul", "TensorFlow", 0.0061, 0.019); if (backend == DNN_BACKEND_TIMVX) testLayer("nhwc_transpose_reshape_matmul", "TensorFlow", 0.0018, 0.0175); else testLayer("nhwc_transpose_reshape_matmul", "TensorFlow", 0.0009, 0.0091); testLayer("nhwc_reshape_matmul", "TensorFlow", 0.03, 0.071); testLayer("matmul_layout", "TensorFlow", 0.035, 0.06); testLayer("tf2_dense", "TensorFlow", 0, 0); testLayer("matmul_add", "ONNX", 0.041, 0.082); testLayer("linear", "ONNX", 0.0027, 0.0046); if (backend == DNN_BACKEND_TIMVX) testLayer("constant", "ONNX", 0.00048, 0.0013); else testLayer("constant", "ONNX", 0.00021, 0.0006); testLayer("lin_with_constant", "ONNX", 0.0011, 0.0016); { SCOPED_TRACE("Per-tensor quantize"); testLayer("layer_inner_product", "Caffe", 0.0055, 0.02, 1, 1, true, true, false, false); testLayer("matmul", "TensorFlow", 0.0075, 0.019, 1, 1, false, true, false, false); testLayer("nhwc_transpose_reshape_matmul", "TensorFlow", 0.0009, 0.0091, 1, 1, false, true, false, false); testLayer("nhwc_reshape_matmul", "TensorFlow", 0.037, 0.071, 1, 1, false, true, false, false); testLayer("matmul_layout", "TensorFlow", 0.035, 0.095, 1, 1, false, true, false, false); testLayer("tf2_dense", "TensorFlow", 0, 0, 1, 1, false, true, false, false); testLayer("matmul_add", "ONNX", 0.041, 0.082, 1, 1, false, true, false, false); testLayer("linear", "ONNX", 0.0027, 0.005, 1, 1, false, true, false, false); testLayer("constant", "ONNX", 0.00038, 0.0012, 1, 1, false, true, false, false); testLayer("lin_with_constant", "ONNX", 0.0011, 0.0016, 1, 1, false, true, false, false); } } TEST_P(Test_Int8_layers, Reshape) { testLayer("reshape_layer", "TensorFlow", 0.0032, 0.0082); if (backend == DNN_BACKEND_TIMVX) testLayer("reshape_nchw", "TensorFlow", 0.0092, 0.0495); else testLayer("reshape_nchw", "TensorFlow", 0.0089, 0.029); testLayer("reshape_conv", "TensorFlow", 0.035, 0.054); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) testLayer("reshape_reduce", "TensorFlow", 0.0053, 0.011); else testLayer("reshape_reduce", "TensorFlow", 0.0042, 0.0078); testLayer("reshape_as_shape", "TensorFlow", 0.0014, 0.0028); testLayer("reshape_no_reorder", "TensorFlow", 0.0014, 0.0028); testLayer("shift_reshape_no_reorder", "TensorFlow", 0.0063, backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ? 0.016 : 0.014); testLayer("dynamic_reshape", "ONNX", 0.0047, 0.0079); testLayer("dynamic_reshape_opset_11", "ONNX", 0.0048, 0.0081); testLayer("flatten_by_prod", "ONNX", 0.0048, 0.0081); testLayer("squeeze", "ONNX", 0.0048, 0.0081); testLayer("unsqueeze", "ONNX", 0.0033, 0.0053); if (backend == DNN_BACKEND_TIMVX) testLayer("squeeze_and_conv_dynamic_axes", "ONNX", 0.006, 0.0212); else testLayer("squeeze_and_conv_dynamic_axes", "ONNX", 0.0054, 0.0154); testLayer("unsqueeze_and_conv_dynamic_axes", "ONNX", 0.0037, 0.0151); } TEST_P(Test_Int8_layers, Permute) { testLayer("tf2_permute_nhwc_ncwh", "TensorFlow", 0.0028, 0.006); testLayer("transpose", "ONNX", 0.0015, 0.0046); } TEST_P(Test_Int8_layers, Identity) { testLayer("expand_batch", "ONNX", 0.0027, 0.0036); testLayer("expand_channels", "ONNX", 0.0013, 0.0019); testLayer("expand_neg_batch", "ONNX", 0.00071, 0.0019); } TEST_P(Test_Int8_layers, Slice_split_tf) { testLayer("split", "TensorFlow", 0.0033, 0.0056); } TEST_P(Test_Int8_layers, Slice_4d_tf) { testLayer("slice_4d", "TensorFlow", 0.003, 0.0073); } TEST_P(Test_Int8_layers, Slice_strided_tf) { testLayer("strided_slice", "TensorFlow", 0.008, 0.0142); } TEST_P(Test_Int8_layers, DISABLED_Slice_onnx) // FIXIT Support 'Identity' layer for outputs (#22022) { testLayer("slice", "ONNX", 0.0046, 0.0077); } TEST_P(Test_Int8_layers, Slice_dynamic_axes_onnx) { testLayer("slice_dynamic_axes", "ONNX", 0.0039, 0.02); } TEST_P(Test_Int8_layers, Slice_steps_2d_onnx11) { testLayer("slice_opset_11_steps_2d", "ONNX", 0.01, 0.0124); } TEST_P(Test_Int8_layers, Slice_steps_3d_onnx11) { testLayer("slice_opset_11_steps_3d", "ONNX", 0.0068, 0.014); } TEST_P(Test_Int8_layers, Slice_steps_4d_onnx11) { testLayer("slice_opset_11_steps_4d", "ONNX", 0.0041, 0.008); } TEST_P(Test_Int8_layers, Slice_steps_5d_onnx11) { testLayer("slice_opset_11_steps_5d", "ONNX", 0.0085, 0.021); } TEST_P(Test_Int8_layers, Dropout) { testLayer("layer_dropout", "Caffe", 0.0021, 0.004); testLayer("dropout", "ONNX", 0.0029, 0.004); } TEST_P(Test_Int8_layers, Eltwise) { testLayer("layer_eltwise", "Caffe", 0.062, 0.15); if (backend == DNN_BACKEND_TIMVX) applyTestTag(CV_TEST_TAG_DNN_SKIP_TIMVX); testLayer("conv_2_inps", "Caffe", 0.0086, 0.0232, 2, 1, true, false); testLayer("eltwise_sub", "TensorFlow", 0.015, 0.047); testLayer("eltwise_add_vec", "TensorFlow", 0.037, backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ? 0.24 : 0.21); // tflite 0.0095, 0.0365 testLayer("eltwise_mul_vec", "TensorFlow", 0.173, 1.14); // tflite 0.0028, 0.017 testLayer("channel_broadcast", "TensorFlow", 0.0025, 0.0063); testLayer("split_equals", "TensorFlow", backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ? 0.021 : 0.02, 0.065); testLayer("mul", "ONNX", 0.0039, 0.014); testLayer("split_max", "ONNX", 0.004, 0.012); } INSTANTIATE_TEST_CASE_P(/**/, Test_Int8_layers, dnnBackendsAndTargetsInt8()); class Test_Int8_nets : public DNNTestLayer { public: void testClassificationNet(Net baseNet, const Mat& blob, const Mat& ref, double l1, double lInf, bool perChannel = true) { Net qnet = baseNet.quantize(blob, CV_32F, CV_32F, perChannel); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); qnet.setInput(blob); Mat out = qnet.forward(); normAssert(ref, out, "", l1, lInf); } void testDetectionNet(Net baseNet, const Mat& blob, const Mat& ref, double confThreshold, double scoreDiff, double iouDiff, bool perChannel = true) { Net qnet = baseNet.quantize(blob, CV_32F, CV_32F, perChannel); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); qnet.setInput(blob); Mat out = qnet.forward(); normAssertDetections(ref, out, "", confThreshold, scoreDiff, iouDiff); } void testFaster(Net baseNet, const Mat& ref, double confThreshold, double scoreDiff, double iouDiff, bool perChannel = true) { Mat inp = imread(_tf("dog416.png")); resize(inp, inp, Size(800, 600)); Mat blob = blobFromImage(inp, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false); Mat imInfo = (Mat_(1, 3) << inp.rows, inp.cols, 1.6f); Net qnet = baseNet.quantize(std::vector{blob, imInfo}, CV_32F, CV_32F, perChannel); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); qnet.setInput(blob, "data"); qnet.setInput(imInfo, "im_info"); Mat out = qnet.forward(); normAssertDetections(ref, out, "", confThreshold, scoreDiff, iouDiff); } void testONNXNet(const String& basename, double l1, double lInf, bool useSoftmax = false, bool perChannel = true) { String onnxmodel = findDataFile("dnn/onnx/models/" + basename + ".onnx", false); Mat blob = readTensorFromONNX(findDataFile("dnn/onnx/data/input_" + basename + ".pb")); Mat ref = readTensorFromONNX(findDataFile("dnn/onnx/data/output_" + basename + ".pb")); Net baseNet = readNetFromONNX(onnxmodel); Net qnet = baseNet.quantize(blob, CV_32F, CV_32F, perChannel); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); qnet.setInput(blob); Mat out = qnet.forward(); if (useSoftmax) { LayerParams lp; Net netSoftmax; netSoftmax.addLayerToPrev("softmaxLayer", "Softmax", lp); netSoftmax.setPreferableBackend(DNN_BACKEND_OPENCV); netSoftmax.setInput(out); out = netSoftmax.forward(); netSoftmax.setInput(ref); ref = netSoftmax.forward(); } normAssert(ref, out, "", l1, lInf); } void testDarknetModel(const std::string& cfg, const std::string& weights, const cv::Mat& ref, double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4, bool perChannel = true) { CV_Assert(ref.cols == 7); std::vector > refClassIds; std::vector > refScores; std::vector > refBoxes; for (int i = 0; i < ref.rows; ++i) { int batchId = static_cast(ref.at(i, 0)); int classId = static_cast(ref.at(i, 1)); float score = ref.at(i, 2); float left = ref.at(i, 3); float top = ref.at(i, 4); float right = ref.at(i, 5); float bottom = ref.at(i, 6); Rect2d box(left, top, right - left, bottom - top); if (batchId >= refClassIds.size()) { refClassIds.resize(batchId + 1); refScores.resize(batchId + 1); refBoxes.resize(batchId + 1); } refClassIds[batchId].push_back(classId); refScores[batchId].push_back(score); refBoxes[batchId].push_back(box); } Mat img1 = imread(_tf("dog416.png")); Mat img2 = imread(_tf("street.png")); std::vector samples(2); samples[0] = img1; samples[1] = img2; // determine test type, whether batch or single img int batch_size = refClassIds.size(); CV_Assert(batch_size == 1 || batch_size == 2); samples.resize(batch_size); Mat inp = blobFromImages(samples, 1.0/255, Size(416, 416), Scalar(), true, false); Net baseNet = readNetFromDarknet(findDataFile("dnn/" + cfg), findDataFile("dnn/" + weights, false)); Net qnet = baseNet.quantize(inp, CV_32F, CV_32F, perChannel); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); qnet.setInput(inp); std::vector outs; qnet.forward(outs, qnet.getUnconnectedOutLayersNames()); for (int b = 0; b < batch_size; ++b) { std::vector classIds; std::vector confidences; std::vector boxes; for (int i = 0; i < outs.size(); ++i) { Mat out; if (batch_size > 1){ // get the sample slice from 3D matrix (batch, box, classes+5) Range ranges[3] = {Range(b, b+1), Range::all(), Range::all()}; out = outs[i](ranges).reshape(1, outs[i].size[1]); }else{ out = outs[i]; } for (int j = 0; j < out.rows; ++j) { Mat scores = out.row(j).colRange(5, out.cols); double confidence; Point maxLoc; minMaxLoc(scores, 0, &confidence, 0, &maxLoc); if (confidence > confThreshold) { float* detection = out.ptr(j); double centerX = detection[0]; double centerY = detection[1]; double width = detection[2]; double height = detection[3]; boxes.push_back(Rect2d(centerX - 0.5 * width, centerY - 0.5 * height, width, height)); confidences.push_back(confidence); classIds.push_back(maxLoc.x); } } } // here we need NMS of boxes std::vector indices; NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); std::vector nms_classIds; std::vector nms_confidences; std::vector nms_boxes; for (size_t i = 0; i < indices.size(); ++i) { int idx = indices[i]; Rect2d box = boxes[idx]; float conf = confidences[idx]; int class_id = classIds[idx]; nms_boxes.push_back(box); nms_confidences.push_back(conf); nms_classIds.push_back(class_id); } if (cvIsNaN(iouDiff)) { if (b == 0) std::cout << "Skip accuracy checks" << std::endl; continue; } normAssertDetections(refClassIds[b], refScores[b], refBoxes[b], nms_classIds, nms_confidences, nms_boxes, format("batch size %d, sample %d\n", batch_size, b).c_str(), confThreshold, scoreDiff, iouDiff); } } }; TEST_P(Test_Int8_nets, AlexNet) { #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) applyTestTag(CV_TEST_TAG_MEMORY_2GB); #else applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); #endif if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Net net = readNetFromCaffe(findDataFile("dnn/bvlc_alexnet.prototxt"), findDataFile("dnn/bvlc_alexnet.caffemodel", false)); Mat inp = imread(_tf("grace_hopper_227.png")); Mat blob = blobFromImage(inp, 1.0, Size(227, 227), Scalar(), false); Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy")); float l1 = 1e-4, lInf = 0.003; testClassificationNet(net, blob, ref, l1, lInf); } TEST_P(Test_Int8_nets, GoogLeNet) { if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt"), findDataFile("dnn/bvlc_googlenet.caffemodel", false)); std::vector inpMats; inpMats.push_back( imread(_tf("googlenet_0.png")) ); inpMats.push_back( imread(_tf("googlenet_1.png")) ); Mat blob = blobFromImages(inpMats, 1.0, Size(224, 224), Scalar(), false); Mat ref = blobFromNPY(_tf("googlenet_prob.npy")); float l1 = 2e-4, lInf = 0.07; testClassificationNet(net, blob, ref, l1, lInf); } TEST_P(Test_Int8_nets, ResNet50) { applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt"), findDataFile("dnn/ResNet-50-model.caffemodel", false)); Mat inp = imread(_tf("googlenet_0.png")); Mat blob = blobFromImage(inp, 1.0, Size(224, 224), Scalar(), false); Mat ref = blobFromNPY(_tf("resnet50_prob.npy")); float l1 = 3e-4, lInf = 0.05; testClassificationNet(net, blob, ref, l1, lInf); { SCOPED_TRACE("Per-tensor quantize"); testClassificationNet(net, blob, ref, l1, lInf, false); } } TEST_P(Test_Int8_nets, DenseNet121) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); Net net = readNetFromCaffe(findDataFile("dnn/DenseNet_121.prototxt", false), findDataFile("dnn/DenseNet_121.caffemodel", false)); Mat inp = imread(_tf("dog416.png")); Mat blob = blobFromImage(inp, 1.0 / 255.0, Size(224, 224), Scalar(), true, true); Mat ref = blobFromNPY(_tf("densenet_121_output.npy")); float l1 = 0.76, lInf = 3.31; // seems wrong testClassificationNet(net, blob, ref, l1, lInf); } TEST_P(Test_Int8_nets, SqueezeNet_v1_1) { if(target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt"), findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); Mat inp = imread(_tf("googlenet_0.png")); Mat blob = blobFromImage(inp, 1.0, Size(227, 227), Scalar(), false, true); Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy")); float l1 = 3e-4, lInf = 0.056; testClassificationNet(net, blob, ref, l1, lInf); } TEST_P(Test_Int8_nets, CaffeNet) { #if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32)) applyTestTag(CV_TEST_TAG_MEMORY_2GB); #else applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); #endif if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); float l1 = 4e-5, lInf = 0.0025; testONNXNet("caffenet", l1, lInf); } TEST_P(Test_Int8_nets, RCNN_ILSVRC13) { #if defined(OPENCV_32BIT_CONFIGURATION) && (defined(HAVE_OPENCL) || defined(_WIN32)) applyTestTag(CV_TEST_TAG_MEMORY_2GB); #else applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); #endif if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); float l1 = 0.02, lInf = 0.047; testONNXNet("rcnn_ilsvrc13", l1, lInf); } TEST_P(Test_Int8_nets, Inception_v2) { if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); testONNXNet("inception_v2", default_l1, default_lInf, true); } TEST_P(Test_Int8_nets, MobileNet_v2) { if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); testONNXNet("mobilenetv2", default_l1, default_lInf, true); } TEST_P(Test_Int8_nets, Shufflenet) { if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); testONNXNet("shufflenet", default_l1, default_lInf); } TEST_P(Test_Int8_nets, MobileNet_SSD) { if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Net net = readNetFromCaffe(findDataFile("dnn/MobileNetSSD_deploy_19e3ec3.prototxt", false), findDataFile("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", false)); Mat inp = imread(_tf("street.png")); Mat blob = blobFromImage(inp, 1.0 / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy")); float confThreshold = FLT_MIN, scoreDiff = 0.084, iouDiff = 0.43; testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, MobileNet_v1_SSD) { if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Net net = readNetFromTensorflow(findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false), findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt")); Mat inp = imread(_tf("dog416.png")); Mat blob = blobFromImage(inp, 1.0, Size(300, 300), Scalar(), true, false); Mat ref = blobFromNPY(_tf("tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy")); float confThreshold = 0.5, scoreDiff = 0.034, iouDiff = 0.13; testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, MobileNet_v1_SSD_PPN) { if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Net net = readNetFromTensorflow(findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pb", false), findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pbtxt")); Mat inp = imread(_tf("dog416.png")); Mat blob = blobFromImage(inp, 1.0, Size(300, 300), Scalar(), true, false); Mat ref = blobFromNPY(_tf("tensorflow/ssd_mobilenet_v1_ppn_coco.detection_out.npy")); float confThreshold = 0.51, scoreDiff = 0.05, iouDiff = 0.06; testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, Inception_v2_SSD) { if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); Net net = readNetFromTensorflow(findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false), findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt")); Mat inp = imread(_tf("street.png")); Mat blob = blobFromImage(inp, 1.0, Size(300, 300), Scalar(), true, false); Mat ref = (Mat_(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729, 0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131, 0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015, 0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527, 0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384); float confThreshold = 0.5, scoreDiff = 0.0114, iouDiff = 0.22; testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, opencv_face_detector) { if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); Net net = readNetFromCaffe(findDataFile("dnn/opencv_face_detector.prototxt"), findDataFile("dnn/opencv_face_detector.caffemodel", false)); Mat inp = imread(findDataFile("gpu/lbpcascade/er.png")); Mat blob = blobFromImage(inp, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); Mat ref = (Mat_(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631, 0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168, 0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290, 0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477, 0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494, 0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801); float confThreshold = 0.5, scoreDiff = 0.002, iouDiff = 0.4; testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, EfficientDet) { if (cvtest::skipUnstableTests) throw SkipTestException("Skip unstable test"); // detail: https://github.com/opencv/opencv/pull/23167 applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); if (backend == DNN_BACKEND_TIMVX) applyTestTag(CV_TEST_TAG_DNN_SKIP_TIMVX); if (target != DNN_TARGET_CPU) { if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); } Net net = readNetFromTensorflow(findDataFile("dnn/efficientdet-d0.pb", false), findDataFile("dnn/efficientdet-d0.pbtxt")); Mat inp = imread(_tf("dog416.png")); Mat blob = blobFromImage(inp, 1.0/255, Size(512, 512), Scalar(123.675, 116.28, 103.53)); Mat ref = (Mat_(3, 7) << 0, 1, 0.8437444, 0.153996080160141, 0.20534580945968628, 0.7463544607162476, 0.7414066195487976, 0, 17, 0.8245924, 0.16657517850399017, 0.3996818959712982, 0.4111558794975281, 0.9306337833404541, 0, 7, 0.8039304, 0.6118435263633728, 0.13175517320632935, 0.9065558314323425, 0.2943994700908661); float confThreshold = 0.65, scoreDiff = 0.3, iouDiff = 0.18; testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff); { SCOPED_TRACE("Per-tensor quantize"); testDetectionNet(net, blob, ref, 0.85, scoreDiff, iouDiff, false); } } TEST_P(Test_Int8_nets, FasterRCNN_resnet50) { applyTestTag( (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG ); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); Net net = readNetFromTensorflow(findDataFile("dnn/faster_rcnn_resnet50_coco_2018_01_28.pb", false), findDataFile("dnn/faster_rcnn_resnet50_coco_2018_01_28.pbtxt")); Mat inp = imread(_tf("dog416.png")); Mat blob = blobFromImage(inp, 1.0, Size(800, 600), Scalar(), true, false); Mat ref = blobFromNPY(_tf("tensorflow/faster_rcnn_resnet50_coco_2018_01_28.detection_out.npy")); float confThreshold = 0.8, scoreDiff = 0.05, iouDiff = 0.15; testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, FasterRCNN_inceptionv2) { applyTestTag( (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG ); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); Net net = readNetFromTensorflow(findDataFile("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb", false), findDataFile("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt")); Mat inp = imread(_tf("dog416.png")); Mat blob = blobFromImage(inp, 1.0, Size(800, 600), Scalar(), true, false); Mat ref = blobFromNPY(_tf("tensorflow/faster_rcnn_inception_v2_coco_2018_01_28.detection_out.npy")); float confThreshold = 0.5, scoreDiff = 0.21, iouDiff = 0.1; testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, FasterRCNN_vgg16) { applyTestTag( #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) CV_TEST_TAG_MEMORY_2GB, #else CV_TEST_TAG_MEMORY_2GB, #endif CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG ); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); Net net = readNetFromCaffe(findDataFile("dnn/faster_rcnn_vgg16.prototxt"), findDataFile("dnn/VGG16_faster_rcnn_final.caffemodel", false)); Mat ref = (Mat_(3, 7) << 0, 2, 0.949398, 99.2454, 210.141, 601.205, 462.849, 0, 7, 0.997022, 481.841, 92.3218, 722.685, 175.953, 0, 12, 0.993028, 133.221, 189.377, 350.994, 563.166); float confThreshold = 0.8, scoreDiff = 0.048, iouDiff = 0.35; testFaster(net, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, FasterRCNN_zf) { applyTestTag( #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) CV_TEST_TAG_MEMORY_2GB, #else (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), #endif CV_TEST_TAG_DEBUG_VERYLONG ); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); Net net = readNetFromCaffe(findDataFile("dnn/faster_rcnn_zf.prototxt"), findDataFile("dnn/ZF_faster_rcnn_final.caffemodel", false)); Mat ref = (Mat_(3, 7) << 0, 2, 0.90121, 120.407, 115.83, 570.586, 528.395, 0, 7, 0.988779, 469.849, 75.1756, 718.64, 186.762, 0, 12, 0.967198, 138.588, 206.843, 329.766, 553.176); float confThreshold = 0.8, scoreDiff = 0.021, iouDiff = 0.1; testFaster(net, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, RFCN) { applyTestTag( (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG ); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Net net = readNetFromCaffe(findDataFile("dnn/rfcn_pascal_voc_resnet50.prototxt"), findDataFile("dnn/resnet50_rfcn_final.caffemodel", false)); Mat ref = (Mat_(2, 7) << 0, 7, 0.991359, 491.822, 81.1668, 702.573, 178.234, 0, 12, 0.94786, 132.093, 223.903, 338.077, 566.16); float confThreshold = 0.8, scoreDiff = 0.15, iouDiff = 0.11; if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { iouDiff = 0.12; } testFaster(net, ref, confThreshold, scoreDiff, iouDiff); } TEST_P(Test_Int8_nets, YoloVoc) { applyTestTag( #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) CV_TEST_TAG_MEMORY_2GB, #else CV_TEST_TAG_MEMORY_1GB, #endif CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG ); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Mat ref = (Mat_(6, 7) << 0, 6, 0.750469f, 0.577374f, 0.127391f, 0.902949f, 0.300809f, 0, 1, 0.780879f, 0.270762f, 0.264102f, 0.732475f, 0.745412f, 0, 11, 0.901615f, 0.1386f, 0.338509f, 0.421337f, 0.938789f, 1, 14, 0.623813f, 0.183179f, 0.381921f, 0.247726f, 0.625847f, 1, 6, 0.667770f, 0.446555f, 0.453578f, 0.499986f, 0.519167f, 1, 6, 0.844947f, 0.637058f, 0.460398f, 0.828508f, 0.66427f); std::string config_file = "yolo-voc.cfg"; std::string weights_file = "yolo-voc.weights"; double scoreDiff = 0.12, iouDiff = 0.3; { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff); } { SCOPED_TRACE("batch size 2"); testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); } } TEST_P(Test_Int8_nets, TinyYoloVoc) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); Mat ref = (Mat_(4, 7) << 0, 6, 0.761967f, 0.579042f, 0.159161f, 0.894482f, 0.31994f, 0, 11, 0.780595f, 0.129696f, 0.386467f, 0.445275f, 0.920994f, 1, 6, 0.651450f, 0.460526f, 0.458019f, 0.522527f, 0.5341f, 1, 6, 0.928758f, 0.651024f, 0.463539f, 0.823784f, 0.654998f); std::string config_file = "tiny-yolo-voc.cfg"; std::string weights_file = "tiny-yolo-voc.weights"; double scoreDiff = 0.043, iouDiff = 0.12; { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), scoreDiff, iouDiff); { SCOPED_TRACE("Per-tensor quantize"); testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), 0.1, 0.2, 0.24, 0.6, false); } } { SCOPED_TRACE("batch size 2"); testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); { SCOPED_TRACE("Per-tensor quantize"); testDarknetModel(config_file, weights_file, ref, 0.1, 0.2, 0.24, 0.6, false); } } } TEST_P(Test_Int8_nets, YOLOv3) { applyTestTag( CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_DEBUG_VERYLONG ); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); const int N0 = 3; const int N1 = 6; static const float ref_[/* (N0 + N1) * 7 */] = { 0, 16, 0.998836f, 0.160024f, 0.389964f, 0.417885f, 0.943716f, 0, 1, 0.987908f, 0.150913f, 0.221933f, 0.742255f, 0.746261f, 0, 7, 0.952983f, 0.614621f, 0.150257f, 0.901368f, 0.289251f, 1, 2, 0.997412f, 0.647584f, 0.459939f, 0.821037f, 0.663947f, 1, 2, 0.989633f, 0.450719f, 0.463353f, 0.496306f, 0.522258f, 1, 0, 0.980053f, 0.195856f, 0.378454f, 0.258626f, 0.629257f, 1, 9, 0.785341f, 0.665503f, 0.373543f, 0.688893f, 0.439244f, 1, 9, 0.733275f, 0.376029f, 0.315694f, 0.401776f, 0.395165f, 1, 9, 0.384815f, 0.659824f, 0.372389f, 0.673927f, 0.429412f, }; Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_); std::string config_file = "yolov3.cfg"; std::string weights_file = "yolov3.weights"; double scoreDiff = 0.08, iouDiff = 0.21, confThreshold = 0.25; { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff, confThreshold); } { SCOPED_TRACE("batch size 2"); testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, confThreshold); } } TEST_P(Test_Int8_nets, YOLOv4) { applyTestTag( CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_DEBUG_VERYLONG ); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); const int N0 = 3; const int N1 = 7; static const float ref_[/* (N0 + N1) * 7 */] = { 0, 16, 0.992194f, 0.172375f, 0.402458f, 0.403918f, 0.932801f, 0, 1, 0.988326f, 0.166708f, 0.228236f, 0.737208f, 0.735803f, 0, 7, 0.94639f, 0.602523f, 0.130399f, 0.901623f, 0.298452f, 1, 2, 0.99761f, 0.646556f, 0.45985f, 0.816041f, 0.659067f, 1, 0, 0.988913f, 0.201726f, 0.360282f, 0.266181f, 0.631728f, 1, 2, 0.98233f, 0.452007f, 0.462217f, 0.495612f, 0.521687f, 1, 9, 0.919195f, 0.374642f, 0.316524f, 0.398126f, 0.393714f, 1, 9, 0.856303f, 0.666842f, 0.372215f, 0.685539f, 0.44141f, 1, 9, 0.313516f, 0.656791f, 0.374734f, 0.671959f, 0.438371f, 1, 9, 0.256625f, 0.940232f, 0.326931f, 0.967586f, 0.374002f, }; Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_); std::string config_file = "yolov4.cfg"; std::string weights_file = "yolov4.weights"; double scoreDiff = 0.15, iouDiff = 0.2; { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff); } { SCOPED_TRACE("batch size 2"); testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); } } TEST_P(Test_Int8_nets, YOLOv4_tiny) { applyTestTag( target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB ); if (target == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (target == DNN_TARGET_OPENCL && !ocl::Device::getDefault().isIntel()) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); const float confThreshold = 0.6; const int N0 = 2; const int N1 = 3; static const float ref_[/* (N0 + N1) * 7 */] = { 0, 16, 0.912199f, 0.169926f, 0.350896f, 0.422704f, 0.941837f, 0, 7, 0.845388f, 0.617568f, 0.13961f, 0.9008f, 0.29315f, 1, 2, 0.997789f, 0.657455f, 0.459714f, 0.809122f, 0.656829f, 1, 2, 0.924423f, 0.442872f, 0.470127f, 0.49816f, 0.516516f, 1, 0, 0.728307f, 0.202607f, 0.369828f, 0.259445f, 0.613846f, }; Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_); std::string config_file = "yolov4-tiny-2020-12.cfg"; std::string weights_file = "yolov4-tiny-2020-12.weights"; double scoreDiff = 0.12; double iouDiff = target == DNN_TARGET_OPENCL_FP16 ? 0.2 : 0.118; { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff, confThreshold); { SCOPED_TRACE("Per-tensor quantize"); testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, 0.224, 0.7, 0.4, false); } } throw SkipTestException("batch2: bad accuracy on second image"); /* bad accuracy on second image { SCOPED_TRACE("batch size 2"); testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, confThreshold); } */ } INSTANTIATE_TEST_CASE_P(/**/, Test_Int8_nets, dnnBackendsAndTargetsInt8()); }} // namespace