/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include namespace opencv_test { namespace { class CV_DisTransTest : public cvtest::ArrayTest { public: CV_DisTransTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); void prepare_to_validation( int ); void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ); int prepare_test_case( int test_case_idx ); int mask_size; int dist_type; int fill_labels; float mask[3]; }; CV_DisTransTest::CV_DisTransTest() { test_array[INPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); optional_mask = false; element_wise_relative_error = true; } void CV_DisTransTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); types[INPUT][0] = CV_8UC1; types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1; types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_32SC1; if( cvtest::randInt(rng) & 1 ) { mask_size = 3; } else { mask_size = 5; } dist_type = cvtest::randInt(rng) % 3; dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 : CV_DIST_L2; // for now, check only the "labeled" distance transform mode fill_labels = 0; if( !fill_labels ) sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(0,0); } double CV_DisTransTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { Size sz = test_mat[INPUT][0].size(); return dist_type == CV_DIST_C || dist_type == CV_DIST_L1 ? 0 : 0.01*MAX(sz.width, sz.height); } void CV_DisTransTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ) { cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high ); if( i == INPUT && CV_MAT_DEPTH(type) == CV_8U ) { low = Scalar::all(0); high = Scalar::all(10); } } int CV_DisTransTest::prepare_test_case( int test_case_idx ) { int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); if( code > 0 ) { // the function's response to an "all-nonzeros" image is not determined, // so put at least one zero point Mat& mat = test_mat[INPUT][0]; RNG& rng = ts->get_rng(); int i = cvtest::randInt(rng) % mat.rows; int j = cvtest::randInt(rng) % mat.cols; mat.at(i,j) = 0; } return code; } void CV_DisTransTest::run_func() { cvDistTransform( test_array[INPUT][0], test_array[OUTPUT][0], dist_type, mask_size, dist_type == CV_DIST_USER ? mask : 0, test_array[OUTPUT][1] ); } static void cvTsDistTransform( const CvMat* _src, CvMat* _dst, int dist_type, int mask_size, float* _mask, CvMat* /*_labels*/ ) { int i, j, k; int width = _src->cols, height = _src->rows; const float init_val = 1e6; float mask[3]; CvMat* temp; int ofs[16] = {0}; float delta[16]; int tstep, count; CV_Assert( mask_size == 3 || mask_size == 5 ); if( dist_type == CV_DIST_USER ) memcpy( mask, _mask, sizeof(mask) ); else if( dist_type == CV_DIST_C ) { mask_size = 3; mask[0] = mask[1] = 1.f; } else if( dist_type == CV_DIST_L1 ) { mask_size = 3; mask[0] = 1.f; mask[1] = 2.f; } else if( mask_size == 3 ) { mask[0] = 0.955f; mask[1] = 1.3693f; } else { mask[0] = 1.0f; mask[1] = 1.4f; mask[2] = 2.1969f; } temp = cvCreateMat( height + mask_size-1, width + mask_size-1, CV_32F ); tstep = temp->step / sizeof(float); if( mask_size == 3 ) { count = 4; ofs[0] = -1; delta[0] = mask[0]; ofs[1] = -tstep-1; delta[1] = mask[1]; ofs[2] = -tstep; delta[2] = mask[0]; ofs[3] = -tstep+1; delta[3] = mask[1]; } else { count = 8; ofs[0] = -1; delta[0] = mask[0]; ofs[1] = -tstep-2; delta[1] = mask[2]; ofs[2] = -tstep-1; delta[2] = mask[1]; ofs[3] = -tstep; delta[3] = mask[0]; ofs[4] = -tstep+1; delta[4] = mask[1]; ofs[5] = -tstep+2; delta[5] = mask[2]; ofs[6] = -tstep*2-1; delta[6] = mask[2]; ofs[7] = -tstep*2+1; delta[7] = mask[2]; } for( i = 0; i < mask_size/2; i++ ) { float* t0 = (float*)(temp->data.ptr + i*temp->step); float* t1 = (float*)(temp->data.ptr + (temp->rows - i - 1)*temp->step); for( j = 0; j < width + mask_size - 1; j++ ) t0[j] = t1[j] = init_val; } for( i = 0; i < height; i++ ) { uchar* s = _src->data.ptr + i*_src->step; float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2); for( j = 0; j < mask_size/2; j++ ) tmp[-j-1] = tmp[j + width] = init_val; for( j = 0; j < width; j++ ) { if( s[j] == 0 ) tmp[j] = 0; else { float min_dist = init_val; for( k = 0; k < count; k++ ) { float t = tmp[j+ofs[k]] + delta[k]; if( min_dist > t ) min_dist = t; } tmp[j] = min_dist; } } } for( i = height - 1; i >= 0; i-- ) { float* d = (float*)(_dst->data.ptr + i*_dst->step); float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2); for( j = width - 1; j >= 0; j-- ) { float min_dist = tmp[j]; if( min_dist > mask[0] ) { for( k = 0; k < count; k++ ) { float t = tmp[j-ofs[k]] + delta[k]; if( min_dist > t ) min_dist = t; } tmp[j] = min_dist; } d[j] = min_dist; } } cvReleaseMat( &temp ); } void CV_DisTransTest::prepare_to_validation( int /*test_case_idx*/ ) { CvMat _input = cvMat(test_mat[INPUT][0]), _output = cvMat(test_mat[REF_OUTPUT][0]); cvTsDistTransform( &_input, &_output, dist_type, mask_size, mask, 0 ); } TEST(Imgproc_DistanceTransform, accuracy) { CV_DisTransTest test; test.safe_run(); } BIGDATA_TEST(Imgproc_DistanceTransform, large_image_12218) { const int lls_maxcnt = 79992000; // labels's maximum count const int lls_mincnt = 1; // labels's minimum count int i, j, nz; Mat src(8000, 20000, CV_8UC1), dst, labels; for( i = 0; i < src.rows; i++ ) for( j = 0; j < src.cols; j++ ) src.at(i, j) = (j > (src.cols / 2)) ? 0 : 255; distanceTransform(src, dst, labels, cv::DIST_L2, cv::DIST_MASK_3, DIST_LABEL_PIXEL); double scale = (double)lls_mincnt / (double)lls_maxcnt; labels.convertTo(labels, CV_32SC1, scale); Size size = labels.size(); nz = cv::countNonZero(labels); EXPECT_EQ(nz, (size.height*size.width / 2)); } TEST(Imgproc_DistanceTransform, wide_image_22732) { Mat src = Mat::zeros(1, 4099, CV_8U); // 4099 or larger used to be bad Mat dist(src.rows, src.cols, CV_32F); distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F); int nz = countNonZero(dist); EXPECT_EQ(nz, 0); } TEST(Imgproc_DistanceTransform, large_square_22732) { Mat src = Mat::zeros(8000, 8005, CV_8U), dist; distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F); int nz = countNonZero(dist); EXPECT_EQ(dist.size(), src.size()); EXPECT_EQ(dist.type(), CV_32F); EXPECT_EQ(nz, 0); Point p0(src.cols-1, src.rows-1); src.setTo(1); src.at(p0) = 0; distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F); EXPECT_EQ(dist.size(), src.size()); EXPECT_EQ(dist.type(), CV_32F); bool first = true; int nerrs = 0; for (int y = 0; y < dist.rows; y++) for (int x = 0; x < dist.cols; x++) { float d = dist.at(y, x); double dx = (double)(x - p0.x), dy = (double)(y - p0.y); float d0 = (float)sqrt(dx*dx + dy*dy); if (std::abs(d0 - d) > 1) { if (first) { printf("y=%d, x=%d. dist_ref=%.2f, dist=%.2f\n", y, x, d0, d); first = false; } nerrs++; } } EXPECT_EQ(0, nerrs) << "reference distance map is different from computed one at " << nerrs << " pixels\n"; } BIGDATA_TEST(Imgproc_DistanceTransform, issue_23895_3x3) { Mat src = Mat::zeros(50000, 50000, CV_8U), dist; distanceTransform(src.col(0), dist, DIST_L2, DIST_MASK_3); int nz = countNonZero(dist); EXPECT_EQ(nz, 0); } BIGDATA_TEST(Imgproc_DistanceTransform, issue_23895_5x5) { Mat src = Mat::zeros(50000, 50000, CV_8U), dist; distanceTransform(src.col(0), dist, DIST_L2, DIST_MASK_5); int nz = countNonZero(dist); EXPECT_EQ(nz, 0); } BIGDATA_TEST(Imgproc_DistanceTransform, issue_23895_5x5_labels) { Mat src = Mat::zeros(50000, 50000, CV_8U), dist, labels; distanceTransform(src.col(0), dist, labels, DIST_L2, DIST_MASK_5); int nz = countNonZero(dist); EXPECT_EQ(nz, 0); } TEST(Imgproc_DistanceTransform, max_distance_3x3) { Mat src = Mat::ones(1, 70000, CV_8U), dist; src.at(0, 0) = 0; distanceTransform(src, dist, DIST_L2, DIST_MASK_3); double minVal, maxVal; minMaxLoc(dist, &minVal, &maxVal); EXPECT_GE(maxVal, 65533); } TEST(Imgproc_DistanceTransform, max_distance_5x5) { Mat src = Mat::ones(1, 70000, CV_8U), dist; src.at(0, 0) = 0; distanceTransform(src, dist, DIST_L2, DIST_MASK_5); double minVal, maxVal; minMaxLoc(dist, &minVal, &maxVal); EXPECT_GE(maxVal, 65533); } TEST(Imgproc_DistanceTransform, max_distance_5x5_labels) { Mat src = Mat::ones(1, 70000, CV_8U), dist, labels; src.at(0, 0) = 0; distanceTransform(src, dist, labels, DIST_L2, DIST_MASK_5); double minVal, maxVal; minMaxLoc(dist, &minVal, &maxVal); EXPECT_GE(maxVal, 65533); } TEST(Imgproc_DistanceTransform, precise_long_dist) { static const int maxDist = 1 << 16; Mat src = Mat::ones(1, 70000, CV_8U), dist; src.at(0, 0) = 0; distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F); Mat expected(src.size(), CV_32F); std::iota(expected.begin(), expected.end(), 0.f); expected.colRange(maxDist, expected.cols).setTo(maxDist); EXPECT_EQ(cv::norm(expected, dist, NORM_INF), 0); } }} // namespace