/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2016, Itseez Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "limits" #include using std::cout; using std::endl; /****************************************************************************************\ * Stochastic Gradient Descent SVM Classifier * \****************************************************************************************/ namespace cv { namespace ml { class SVMSGDImpl : public SVMSGD { public: SVMSGDImpl(); virtual ~SVMSGDImpl() {} virtual bool train(const Ptr& data, int); virtual float predict( InputArray samples, OutputArray results=noArray(), int flags = 0 ) const; virtual bool isClassifier() const; virtual bool isTrained() const; virtual void clear(); virtual void write(FileStorage &fs) const; virtual void read(const FileNode &fn); virtual Mat getWeights(){ return weights_; } virtual float getShift(){ return shift_; } virtual int getVarCount() const { return weights_.cols; } virtual String getDefaultName() const {return "opencv_ml_svmsgd";} virtual void setOptimalParameters(int svmsgdType = ASGD, int marginType = SOFT_MARGIN); CV_IMPL_PROPERTY(int, SvmsgdType, params.svmsgdType) CV_IMPL_PROPERTY(int, MarginType, params.marginType) CV_IMPL_PROPERTY(float, MarginRegularization, params.marginRegularization) CV_IMPL_PROPERTY(float, InitialStepSize, params.initialStepSize) CV_IMPL_PROPERTY(float, StepDecreasingPower, params.stepDecreasingPower) CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit) private: void updateWeights(InputArray sample, bool isPositive, float stepSize, Mat &weights); void writeParams( FileStorage &fs ) const; void readParams( const FileNode &fn ); static inline bool isPositive(float val) { return val > 0; } static void normalizeSamples(Mat &matrix, Mat &average, float &multiplier); float calcShift(InputArray _samples, InputArray _responses) const; static void makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier); // Vector with SVM weights Mat weights_; float shift_; // Parameters for learning struct SVMSGDParams { float marginRegularization; float initialStepSize; float stepDecreasingPower; TermCriteria termCrit; int svmsgdType; int marginType; }; SVMSGDParams params; }; Ptr SVMSGD::create() { return makePtr(); } void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier) { int featuresCount = samples.cols; int samplesCount = samples.rows; average = Mat(1, featuresCount, samples.type()); CV_Assert(average.type() == CV_32FC1); for (int featureIndex = 0; featureIndex < featuresCount; featureIndex++) { average.at(featureIndex) = static_cast(mean(samples.col(featureIndex))[0]); } for (int sampleIndex = 0; sampleIndex < samplesCount; sampleIndex++) { samples.row(sampleIndex) -= average; } double normValue = norm(samples); multiplier = static_cast(sqrt(samples.total()) / normValue); samples *= multiplier; } void SVMSGDImpl::makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier) { Mat normalizedTrainSamples = trainSamples.clone(); int samplesCount = normalizedTrainSamples.rows; normalizeSamples(normalizedTrainSamples, average, multiplier); Mat onesCol = Mat::ones(samplesCount, 1, CV_32F); cv::hconcat(normalizedTrainSamples, onesCol, extendedTrainSamples); } void SVMSGDImpl::updateWeights(InputArray _sample, bool positive, float stepSize, Mat& weights) { Mat sample = _sample.getMat(); int response = positive ? 1 : -1; // ensure that trainResponses are -1 or 1 if ( sample.dot(weights) * response > 1) { // Not a support vector, only apply weight decay weights *= (1.f - stepSize * params.marginRegularization); } else { // It's a support vector, add it to the weights weights -= (stepSize * params.marginRegularization) * weights - (stepSize * response) * sample; } } float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const { float margin[2] = { std::numeric_limits::max(), std::numeric_limits::max() }; Mat trainSamples = _samples.getMat(); int trainSamplesCount = trainSamples.rows; Mat trainResponses = _responses.getMat(); CV_Assert(trainResponses.type() == CV_32FC1); for (int samplesIndex = 0; samplesIndex < trainSamplesCount; samplesIndex++) { Mat currentSample = trainSamples.row(samplesIndex); float dotProduct = static_cast(currentSample.dot(weights_)); bool positive = isPositive(trainResponses.at(samplesIndex)); int index = positive ? 0 : 1; float signToMul = positive ? 1.f : -1.f; float curMargin = dotProduct * signToMul; if (curMargin < margin[index]) { margin[index] = curMargin; } } return -(margin[0] - margin[1]) / 2.f; } bool SVMSGDImpl::train(const Ptr& data, int) { clear(); CV_Assert( isClassifier() ); //toDo: consider Mat trainSamples = data->getTrainSamples(); int featureCount = trainSamples.cols; Mat trainResponses = data->getTrainResponses(); // (trainSamplesCount x 1) matrix CV_Assert(trainResponses.rows == trainSamples.rows); if (trainResponses.empty()) { return false; } int positiveCount = countNonZero(trainResponses >= 0); int negativeCount = countNonZero(trainResponses < 0); if ( positiveCount <= 0 || negativeCount <= 0 ) { weights_ = Mat::zeros(1, featureCount, CV_32F); shift_ = (positiveCount > 0) ? 1.f : -1.f; return true; } Mat extendedTrainSamples; Mat average; float multiplier = 0; makeExtendedTrainSamples(trainSamples, extendedTrainSamples, average, multiplier); int extendedTrainSamplesCount = extendedTrainSamples.rows; int extendedFeatureCount = extendedTrainSamples.cols; Mat extendedWeights = Mat::zeros(1, extendedFeatureCount, CV_32F); Mat previousWeights = Mat::zeros(1, extendedFeatureCount, CV_32F); Mat averageExtendedWeights; if (params.svmsgdType == ASGD) { averageExtendedWeights = Mat::zeros(1, extendedFeatureCount, CV_32F); } RNG rng(0); CV_Assert ((params.termCrit.type & TermCriteria::COUNT || params.termCrit.type & TermCriteria::EPS) && (trainResponses.type() == CV_32FC1)); int maxCount = (params.termCrit.type & TermCriteria::COUNT) ? params.termCrit.maxCount : INT_MAX; double epsilon = (params.termCrit.type & TermCriteria::EPS) ? params.termCrit.epsilon : 0; double err = DBL_MAX; // Stochastic gradient descent SVM for (int iter = 0; (iter < maxCount) && (err > epsilon); iter++) { int randomNumber = rng.uniform(0, extendedTrainSamplesCount); //generate sample number Mat currentSample = extendedTrainSamples.row(randomNumber); float stepSize = params.initialStepSize * std::pow((1 + params.marginRegularization * params.initialStepSize * (float)iter), (-params.stepDecreasingPower)); //update stepSize updateWeights( currentSample, isPositive(trainResponses.at(randomNumber)), stepSize, extendedWeights ); //average weights (only for ASGD model) if (params.svmsgdType == ASGD) { averageExtendedWeights = ((float)iter/ (1 + (float)iter)) * averageExtendedWeights + extendedWeights / (1 + (float) iter); err = norm(averageExtendedWeights - previousWeights); averageExtendedWeights.copyTo(previousWeights); } else { err = norm(extendedWeights - previousWeights); extendedWeights.copyTo(previousWeights); } } if (params.svmsgdType == ASGD) { extendedWeights = averageExtendedWeights; } Rect roi(0, 0, featureCount, 1); weights_ = extendedWeights(roi); weights_ *= multiplier; CV_Assert((params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN) && (extendedWeights.type() == CV_32FC1)); if (params.marginType == SOFT_MARGIN) { shift_ = extendedWeights.at(featureCount) - static_cast(weights_.dot(average)); } else { shift_ = calcShift(trainSamples, trainResponses); } return true; } float SVMSGDImpl::predict( InputArray _samples, OutputArray _results, int ) const { float result = 0; cv::Mat samples = _samples.getMat(); int nSamples = samples.rows; cv::Mat results; CV_Assert( samples.cols == weights_.cols && samples.type() == CV_32FC1); if( _results.needed() ) { _results.create( nSamples, 1, samples.type() ); results = _results.getMat(); } else { CV_Assert( nSamples == 1 ); results = Mat(1, 1, CV_32FC1, &result); } for (int sampleIndex = 0; sampleIndex < nSamples; sampleIndex++) { Mat currentSample = samples.row(sampleIndex); float criterion = static_cast(currentSample.dot(weights_)) + shift_; results.at(sampleIndex) = (criterion >= 0) ? 1.f : -1.f; } return result; } bool SVMSGDImpl::isClassifier() const { return (params.svmsgdType == SGD || params.svmsgdType == ASGD) && (params.marginType == SOFT_MARGIN || params.marginType == HARD_MARGIN) && (params.marginRegularization > 0) && (params.initialStepSize > 0) && (params.stepDecreasingPower >= 0); } bool SVMSGDImpl::isTrained() const { return !weights_.empty(); } void SVMSGDImpl::write(FileStorage& fs) const { if( !isTrained() ) CV_Error( CV_StsParseError, "SVMSGD model data is invalid, it hasn't been trained" ); writeParams( fs ); fs << "weights" << weights_; fs << "shift" << shift_; } void SVMSGDImpl::writeParams( FileStorage& fs ) const { String SvmsgdTypeStr; switch (params.svmsgdType) { case SGD: SvmsgdTypeStr = "SGD"; break; case ASGD: SvmsgdTypeStr = "ASGD"; break; default: SvmsgdTypeStr = format("Unknown_%d", params.svmsgdType); } fs << "svmsgdType" << SvmsgdTypeStr; String marginTypeStr; switch (params.marginType) { case SOFT_MARGIN: marginTypeStr = "SOFT_MARGIN"; break; case HARD_MARGIN: marginTypeStr = "HARD_MARGIN"; break; default: marginTypeStr = format("Unknown_%d", params.marginType); } fs << "marginType" << marginTypeStr; fs << "marginRegularization" << params.marginRegularization; fs << "initialStepSize" << params.initialStepSize; fs << "stepDecreasingPower" << params.stepDecreasingPower; fs << "term_criteria" << "{:"; if( params.termCrit.type & TermCriteria::EPS ) fs << "epsilon" << params.termCrit.epsilon; if( params.termCrit.type & TermCriteria::COUNT ) fs << "iterations" << params.termCrit.maxCount; fs << "}"; } void SVMSGDImpl::read(const FileNode& fn) { clear(); readParams(fn); fn["weights"] >> weights_; fn["shift"] >> shift_; } void SVMSGDImpl::readParams( const FileNode& fn ) { String svmsgdTypeStr = (String)fn["svmsgdType"]; int svmsgdType = svmsgdTypeStr == "SGD" ? SGD : svmsgdTypeStr == "ASGD" ? ASGD : -1; if( svmsgdType < 0 ) CV_Error( CV_StsParseError, "Missing or invalid SVMSGD type" ); params.svmsgdType = svmsgdType; String marginTypeStr = (String)fn["marginType"]; int marginType = marginTypeStr == "SOFT_MARGIN" ? SOFT_MARGIN : marginTypeStr == "HARD_MARGIN" ? HARD_MARGIN : -1; if( marginType < 0 ) CV_Error( CV_StsParseError, "Missing or invalid margin type" ); params.marginType = marginType; CV_Assert ( fn["marginRegularization"].isReal() ); params.marginRegularization = (float)fn["marginRegularization"]; CV_Assert ( fn["initialStepSize"].isReal() ); params.initialStepSize = (float)fn["initialStepSize"]; CV_Assert ( fn["stepDecreasingPower"].isReal() ); params.stepDecreasingPower = (float)fn["stepDecreasingPower"]; FileNode tcnode = fn["term_criteria"]; if( !tcnode.empty() ) { params.termCrit.epsilon = (double)tcnode["epsilon"]; params.termCrit.maxCount = (int)tcnode["iterations"]; params.termCrit.type = (params.termCrit.epsilon > 0 ? TermCriteria::EPS : 0) + (params.termCrit.maxCount > 0 ? TermCriteria::COUNT : 0); } else params.termCrit = TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 100000, FLT_EPSILON ); } void SVMSGDImpl::clear() { weights_.release(); shift_ = 0; } SVMSGDImpl::SVMSGDImpl() { clear(); setOptimalParameters(); } void SVMSGDImpl::setOptimalParameters(int svmsgdType, int marginType) { switch (svmsgdType) { case SGD: params.svmsgdType = SGD; params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN : (marginType == HARD_MARGIN) ? HARD_MARGIN : -1; params.marginRegularization = 0.0001f; params.initialStepSize = 0.05f; params.stepDecreasingPower = 1.f; params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001); break; case ASGD: params.svmsgdType = ASGD; params.marginType = (marginType == SOFT_MARGIN) ? SOFT_MARGIN : (marginType == HARD_MARGIN) ? HARD_MARGIN : -1; params.marginRegularization = 0.00001f; params.initialStepSize = 0.05f; params.stepDecreasingPower = 0.75f; params.termCrit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100000, 0.00001); break; default: CV_Error( CV_StsParseError, "SVMSGD model data is invalid" ); } } } //ml } //cv