// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "perf_precomp.hpp" namespace opencv_test { namespace { using namespace cv; /** Reprojects screen point to camera space given z coord. */ struct Reprojector { Reprojector() {} inline Reprojector(Matx33f intr) { fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1); cx = intr(0, 2), cy = intr(1, 2); } template inline cv::Point3_ operator()(cv::Point3_ p) const { T x = p.z * (p.x - cx) * fxinv; T y = p.z * (p.y - cy) * fyinv; return cv::Point3_(x, y, p.z); } float fxinv, fyinv, cx, cy; }; template struct RenderInvoker : ParallelLoopBody { RenderInvoker(Mat_& _frame, Affine3f _pose, Reprojector _reproj, float _depthFactor, bool _onlySemisphere) : ParallelLoopBody(), frame(_frame), pose(_pose), reproj(_reproj), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere) { } virtual void operator ()(const cv::Range& r) const { for (int y = r.start; y < r.end; y++) { float* frameRow = frame[y]; for (int x = 0; x < frame.cols; x++) { float pix = 0; Point3f orig = pose.translation(); // direction through pixel Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f)); float xyt = 1.f / (screenVec.x * screenVec.x + screenVec.y * screenVec.y + 1.f); Point3f dir = normalize(Vec3f(pose.rotation() * screenVec)); // screen space axis dir.y = -dir.y; const float maxDepth = 20.f; const float maxSteps = 256; float t = 0.f; for (int step = 0; step < maxSteps && t < maxDepth; step++) { Point3f p = orig + dir * t; float d = Scene::map(p, onlySemisphere); if (d < 0.000001f) { float depth = std::sqrt(t * t * xyt); pix = depth * depthFactor; break; } t += d; } frameRow[x] = pix; } } } Mat_& frame; Affine3f pose; Reprojector reproj; float depthFactor; bool onlySemisphere; }; template struct RenderColorInvoker : ParallelLoopBody { RenderColorInvoker(Mat_& _frame, Affine3f _pose, Reprojector _reproj, float _depthFactor, bool _onlySemisphere) : ParallelLoopBody(), frame(_frame), pose(_pose), reproj(_reproj), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere) { } virtual void operator ()(const cv::Range& r) const { for (int y = r.start; y < r.end; y++) { Vec3f* frameRow = frame[y]; for (int x = 0; x < frame.cols; x++) { Vec3f pix = 0; Point3f orig = pose.translation(); // direction through pixel Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f)); Point3f dir = normalize(Vec3f(pose.rotation() * screenVec)); // screen space axis dir.y = -dir.y; const float maxDepth = 20.f; const float maxSteps = 256; float t = 0.f; for (int step = 0; step < maxSteps && t < maxDepth; step++) { Point3f p = orig + dir * t; float d = Scene::map(p, onlySemisphere); if (d < 0.000001f) { float m = 0.25f; float p0 = float(abs(fmod(p.x, m)) > m / 2.f); float p1 = float(abs(fmod(p.y, m)) > m / 2.f); float p2 = float(abs(fmod(p.z, m)) > m / 2.f); pix[0] = p0 + p1; pix[1] = p1 + p2; pix[2] = p0 + p2; pix *= 128.f; break; } t += d; } frameRow[x] = pix; } } } Mat_& frame; Affine3f pose; Reprojector reproj; float depthFactor; bool onlySemisphere; }; struct Scene { virtual ~Scene() {} static Ptr create(Size sz, Matx33f _intr, float _depthFactor, bool onlySemisphere); virtual Mat depth(Affine3f pose) = 0; virtual Mat rgb(Affine3f pose) = 0; virtual std::vector getPoses() = 0; }; struct SemisphereScene : Scene { const int framesPerCycle = 72; const float nCycles = 0.25f; const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -2.1f)); Size frameSize; Matx33f intr; float depthFactor; bool onlySemisphere; SemisphereScene(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) : frameSize(sz), intr(_intr), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere) { } static float map(Point3f p, bool onlySemisphere) { float plane = p.y + 0.5f; Point3f spherePose = p - Point3f(-0.0f, 0.3f, 1.1f); float sphereRadius = 0.5f; float sphere = (float)cv::norm(spherePose) - sphereRadius; float sphereMinusBox = sphere; float subSphereRadius = 0.05f; Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f); float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius; float res; if (!onlySemisphere) res = min({ sphereMinusBox, subSphere, plane }); else res = sphereMinusBox; return res; } Mat depth(Affine3f pose) override { Mat_ frame(frameSize); Reprojector reproj(intr); Range range(0, frame.rows); parallel_for_(range, RenderInvoker(frame, pose, reproj, depthFactor, onlySemisphere)); return std::move(frame); } Mat rgb(Affine3f pose) override { Mat_ frame(frameSize); Reprojector reproj(intr); Range range(0, frame.rows); parallel_for_(range, RenderColorInvoker(frame, pose, reproj, depthFactor, onlySemisphere)); return std::move(frame); } std::vector getPoses() override { std::vector poses; for (int i = 0; i < framesPerCycle * nCycles; i++) { float angle = (float)(CV_2PI * i / framesPerCycle); Affine3f pose; pose = pose.rotate(startPose.rotation()); pose = pose.rotate(Vec3f(0.f, -0.5f, 0.f) * angle); pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle), startPose.translation()[1], startPose.translation()[2] * cos(angle))); poses.push_back(pose); } return poses; } }; Ptr Scene::create(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) { return makePtr(sz, _intr, _depthFactor, _onlySemisphere); } // this is a temporary solution // ---------------------------- typedef cv::Vec4f ptype; typedef cv::Mat_< ptype > Points; typedef cv::Mat_< ptype > Colors; typedef Points Normals; typedef Size2i Size; template inline float specPow(float x) { if (p % 2 == 0) { float v = specPow

(x); return v * v; } else { float v = specPow<(p - 1) / 2>(x); return v * v * x; } } template<> inline float specPow<0>(float /*x*/) { return 1.f; } template<> inline float specPow<1>(float x) { return x; } inline cv::Vec3f fromPtype(const ptype& x) { return cv::Vec3f(x[0], x[1], x[2]); } inline Point3f normalize(const Vec3f& v) { double nv = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); return v * (nv ? 1. / nv : 0.); } void renderPointsNormals(InputArray _points, InputArray _normals, OutputArray image, Affine3f lightPose) { Size sz = _points.size(); image.create(sz, CV_8UC4); Points points = _points.getMat(); Normals normals = _normals.getMat(); Mat_ img = image.getMat(); Mat goods; finiteMask(points, goods); Range range(0, sz.height); const int nstripes = -1; parallel_for_(range, [&](const Range&) { for (int y = range.start; y < range.end; y++) { Vec4b* imgRow = img[y]; const ptype* ptsRow = points[y]; const ptype* nrmRow = normals[y]; const uchar* goodRow = goods.ptr(y); for (int x = 0; x < sz.width; x++) { Point3f p = fromPtype(ptsRow[x]); Point3f n = fromPtype(nrmRow[x]); Vec4b color; if ( !goodRow[x] ) { color = Vec4b(0, 32, 0, 0); } else { const float Ka = 0.3f; //ambient coeff const float Kd = 0.5f; //diffuse coeff const float Ks = 0.2f; //specular coeff const int sp = 20; //specular power const float Ax = 1.f; //ambient color, can be RGB const float Dx = 1.f; //diffuse color, can be RGB const float Sx = 1.f; //specular color, can be RGB const float Lx = 1.f; //light color Point3f l = normalize(lightPose.translation() - Vec3f(p)); Point3f v = normalize(-Vec3f(p)); Point3f r = normalize(Vec3f(2.f * n * n.dot(l) - l)); uchar ix = (uchar)((Ax * Ka * Dx + Lx * Kd * Dx * max(0.f, n.dot(l)) + Lx * Ks * Sx * specPow(max(0.f, r.dot(v)))) * 255.f); color = Vec4b(ix, ix, ix, 0); } imgRow[x] = color; } } }, nstripes); } void renderPointsNormalsColors(InputArray _points, InputArray, InputArray _colors, OutputArray image, Affine3f) { Size sz = _points.size(); image.create(sz, CV_8UC4); Points points = _points.getMat(); Colors colors = _colors.getMat(); Mat goods, goodp, goodc; finiteMask(points, goodp); finiteMask(colors, goodc); goods = goodp & goodc; Mat_ img = image.getMat(); Range range(0, sz.height); const int nstripes = -1; parallel_for_(range, [&](const Range&) { for (int y = range.start; y < range.end; y++) { Vec4b* imgRow = img[y]; const ptype* clrRow = colors[y]; const uchar* goodRow = goods.ptr(y); for (int x = 0; x < sz.width; x++) { Point3f c = fromPtype(clrRow[x]); Vec4b color; if ( !goodRow[x] ) { color = Vec4b(0, 32, 0, 0); } else { color = Vec4b((uchar)c.x, (uchar)c.y, (uchar)c.z, (uchar)0); } imgRow[x] = color; } } }, nstripes); } // ---------------------------- void displayImage(Mat depth, Mat points, Mat normals, float depthFactor, Vec3f lightPose) { Mat image; patchNaNs(points); imshow("depth", depth * (1.f / depthFactor / 4.f)); renderPointsNormals(points, normals, image, lightPose); imshow("render", image); waitKey(100); } void displayColorImage(Mat depth, Mat rgb, Mat points, Mat normals, Mat colors, float depthFactor, Vec3f lightPose) { Mat image; patchNaNs(points); imshow("depth", depth * (1.f / depthFactor / 4.f)); imshow("rgb", rgb * (1.f / 255.f)); renderPointsNormalsColors(points, normals, colors, image, lightPose); imshow("render", image); waitKey(100); } static const bool display = false; enum PlatformType { CPU = 0, GPU = 1 }; CV_ENUM(PlatformTypeEnum, PlatformType::CPU, PlatformType::GPU); enum Sequence { ALL = 0, FIRST = 1 }; CV_ENUM(SequenceEnum, Sequence::ALL, Sequence::FIRST); enum class VolumeTestSrcType { MAT = 0, ODOMETRY_FRAME = 1 }; // used to store current OpenCL status (on/off) and revert it after test is done // works even after exceptions thrown in test body struct OpenCLStatusRevert { #ifdef HAVE_OPENCL OpenCLStatusRevert() { originalOpenCLStatus = cv::ocl::useOpenCL(); } ~OpenCLStatusRevert() { cv::ocl::setUseOpenCL(originalOpenCLStatus); } void off() { cv::ocl::setUseOpenCL(false); } bool originalOpenCLStatus; #else void off() { } #endif }; // CV_ENUM does not support enum class types, so let's implement the class explicitly namespace { struct VolumeTypeEnum { static const std::array vals; static const std::array svals; VolumeTypeEnum(VolumeType v = VolumeType::TSDF) : val(v) {} operator VolumeType() const { return val; } void PrintTo(std::ostream *os) const { int v = int(val); if (v >= 0 && v < 3) { *os << svals[v]; } else { *os << "UNKNOWN"; } } static ::testing::internal::ParamGenerator all() { return ::testing::Values(VolumeTypeEnum(vals[0]), VolumeTypeEnum(vals[1]), VolumeTypeEnum(vals[2])); } private: VolumeType val; }; const std::array VolumeTypeEnum::vals{VolumeType::TSDF, VolumeType::HashTSDF, VolumeType::ColorTSDF}; const std::array VolumeTypeEnum::svals{std::string("TSDF"), std::string("HashTSDF"), std::string("ColorTSDF")}; static inline void PrintTo(const VolumeTypeEnum &t, std::ostream *os) { t.PrintTo(os); } struct VolumeTestSrcTypeEnum { static const std::array vals; static const std::array svals; VolumeTestSrcTypeEnum(VolumeTestSrcType v = VolumeTestSrcType::MAT) : val(v) {} operator VolumeTestSrcType() const { return val; } void PrintTo(std::ostream *os) const { int v = int(val); if (v >= 0 && v < 3) { *os << svals[v]; } else { *os << "UNKNOWN"; } } static ::testing::internal::ParamGenerator all() { return ::testing::Values(VolumeTestSrcTypeEnum(vals[0]), VolumeTestSrcTypeEnum(vals[1])); } private: VolumeTestSrcType val; }; const std::array VolumeTestSrcTypeEnum::vals{VolumeTestSrcType::MAT, VolumeTestSrcType::ODOMETRY_FRAME}; const std::array VolumeTestSrcTypeEnum::svals{std::string("UMat"), std::string("OdometryFrame")}; static inline void PrintTo(const VolumeTestSrcTypeEnum &t, std::ostream *os) { t.PrintTo(os); } } typedef std::tuple PlatformVolumeType; class VolumePerfFixture : public perf::TestBaseWithParam> { protected: void SetUp() override { TestBase::SetUp(); auto p = GetParam(); gpu = (std::get<0>(std::get<0>(p)) == PlatformType::GPU); volumeType = std::get<1>(std::get<0>(p)); testSrcType = std::get<1>(p); repeat1st = (std::get<2>(p) == Sequence::FIRST); if (!gpu) oclStatus.off(); VolumeSettings vs(volumeType); volume = makePtr(volumeType, vs); frameSize = Size(vs.getRaycastWidth(), vs.getRaycastHeight()); Matx33f intrIntegrate; vs.getCameraIntegrateIntrinsics(intrIntegrate); vs.getCameraRaycastIntrinsics(intrRaycast); bool onlySemisphere = false; depthFactor = vs.getDepthFactor(); scene = Scene::create(frameSize, intrIntegrate, depthFactor, onlySemisphere); poses = scene->getPoses(); } bool gpu; VolumeType volumeType; VolumeTestSrcType testSrcType; bool repeat1st; OpenCLStatusRevert oclStatus; Ptr volume; Size frameSize; Matx33f intrRaycast; Ptr scene; std::vector poses; float depthFactor; }; PERF_TEST_P_(VolumePerfFixture, integrate) { for (size_t i = 0; i < (repeat1st ? 1 : poses.size()); i++) { Matx44f pose = poses[i].matrix; Mat depth = scene->depth(pose); Mat rgb = scene->rgb(pose); UMat urgb, udepth; depth.copyTo(udepth); rgb.copyTo(urgb); OdometryFrame odf(udepth, urgb); bool done = false; while (repeat1st ? next() : !done) { startTimer(); if (testSrcType == VolumeTestSrcType::MAT) if (volumeType == VolumeType::ColorTSDF) volume->integrate(udepth, urgb, pose); else volume->integrate(udepth, pose); else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME) volume->integrate(odf, pose); stopTimer(); // perf check makes sense only for identical states if (repeat1st) volume->reset(); done = true; } } SANITY_CHECK_NOTHING(); } PERF_TEST_P_(VolumePerfFixture, raycast) { for (size_t i = 0; i < (repeat1st ? 1 : poses.size()); i++) { Matx44f pose = poses[i].matrix; Mat depth = scene->depth(pose); Mat rgb = scene->rgb(pose); UMat urgb, udepth; depth.copyTo(udepth); rgb.copyTo(urgb); OdometryFrame odf(udepth, urgb); if (testSrcType == VolumeTestSrcType::MAT) if (volumeType == VolumeType::ColorTSDF) volume->integrate(udepth, urgb, pose); else volume->integrate(udepth, pose); else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME) volume->integrate(odf, pose); UMat upoints, unormals, ucolors; bool done = false; while (repeat1st ? next() : !done) { startTimer(); if (volumeType == VolumeType::ColorTSDF) volume->raycast(pose, frameSize.height, frameSize.width, intrRaycast, upoints, unormals, ucolors); else volume->raycast(pose, frameSize.height, frameSize.width, intrRaycast, upoints, unormals); stopTimer(); done = true; } if (display) { Mat points, normals, colors; points = upoints.getMat(ACCESS_READ); normals = unormals.getMat(ACCESS_READ); colors = ucolors.getMat(ACCESS_READ); Vec3f lightPose = Vec3f::all(0.f); if (volumeType == VolumeType::ColorTSDF) displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose); else displayImage(depth, points, normals, depthFactor, lightPose); } } SANITY_CHECK_NOTHING(); } //TODO: fix it when ColorTSDF gets GPU version INSTANTIATE_TEST_CASE_P(Volume, VolumePerfFixture, /*::testing::Combine(PlatformTypeEnum::all(), VolumeTypeEnum::all())*/ ::testing::Combine( ::testing::Values(PlatformVolumeType {PlatformType::CPU, VolumeType::TSDF}, PlatformVolumeType {PlatformType::CPU, VolumeType::HashTSDF}, PlatformVolumeType {PlatformType::CPU, VolumeType::ColorTSDF}, PlatformVolumeType {PlatformType::GPU, VolumeType::TSDF}, PlatformVolumeType {PlatformType::GPU, VolumeType::HashTSDF}), VolumeTestSrcTypeEnum::all(), SequenceEnum::all())); }} // namespace