/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #ifdef HAVE_LAPACK #define CV_GEMM_BASELINE_ONLY #endif #define CV_MAHALANOBIS_BASELINE_ONLY #define CV_MULTRANSPOSED_BASELINE_ONLY namespace cv { // forward declarations typedef void (*TransformFunc)(const uchar* src, uchar* dst, const uchar* m, int len, int scn, int dcn); typedef void (*ScaleAddFunc)(const uchar* src1, const uchar* src2, uchar* dst, int len, const void* alpha); typedef void (*MulTransposedFunc)(const Mat& src, const/*preallocated*/ Mat& dst, const Mat& delta, double scale); typedef double (*MahalanobisImplFunc)(const Mat& v1, const Mat& v2, const Mat& icovar, double *diff_buffer /*[len]*/, int len /*=v1.total()*/); CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN // forward declarations void gemm32f(const float* src1, size_t src1_step, const float* src2, size_t src2_step, float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags); void gemm64f(const double* src1, size_t src1_step, const double* src2, size_t src2_step, double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags); void gemm32fc(const float* src1, size_t src1_step, const float* src2, size_t src2_step, float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags); void gemm64fc(const double* src1, size_t src1_step, const double* src2, size_t src2_step, double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags); TransformFunc getTransformFunc(int depth); TransformFunc getDiagTransformFunc(int depth); TransformFunc getPerspectiveTransform(int depth); ScaleAddFunc getScaleAddFunc(int depth); MahalanobisImplFunc getMahalanobisImplFunc(int depth); MulTransposedFunc getMulTransposedFunc(int stype, int dtype, bool ata); double dotProd_8u(const uchar* src1, const uchar* src2, int len); double dotProd_8s(const schar* src1, const schar* src2, int len); double dotProd_16u(const ushort* src1, const ushort* src2, int len); double dotProd_16s(const short* src1, const short* src2, int len); double dotProd_32s(const int* src1, const int* src2, int len); double dotProd_32f(const float* src1, const float* src2, int len); double dotProd_64f(const double* src1, const double* src2, int len); #ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY #if !defined(CV_GEMM_BASELINE_ONLY) || defined(CV_CPU_BASELINE_MODE) /****************************************************************************************\ * GEMM * \****************************************************************************************/ static void GEMM_CopyBlock( const uchar* src, size_t src_step, uchar* dst, size_t dst_step, Size size, size_t pix_size ) { int j; size.width *= (int)(pix_size / sizeof(int)); for( ; size.height--; src += src_step, dst += dst_step ) { j=0; #if CV_ENABLE_UNROLLED for( ; j <= size.width - 4; j += 4 ) { int t0 = ((const int*)src)[j]; int t1 = ((const int*)src)[j+1]; ((int*)dst)[j] = t0; ((int*)dst)[j+1] = t1; t0 = ((const int*)src)[j+2]; t1 = ((const int*)src)[j+3]; ((int*)dst)[j+2] = t0; ((int*)dst)[j+3] = t1; } #endif for( ; j < size.width; j++ ) ((int*)dst)[j] = ((const int*)src)[j]; } } static void GEMM_TransposeBlock( const uchar* src, size_t src_step, uchar* dst, size_t dst_step, Size size, size_t pix_size ) { int i, j; for( i = 0; i < size.width; i++, dst += dst_step, src += pix_size ) { const uchar* _src = src; switch( pix_size ) { case sizeof(int): for( j = 0; j < size.height; j++, _src += src_step ) ((int*)dst)[j] = ((int*)_src)[0]; break; case sizeof(int)*2: for( j = 0; j < size.height*2; j += 2, _src += src_step ) { int t0 = ((int*)_src)[0]; int t1 = ((int*)_src)[1]; ((int*)dst)[j] = t0; ((int*)dst)[j+1] = t1; } break; case sizeof(int)*4: for( j = 0; j < size.height*4; j += 4, _src += src_step ) { int t0 = ((int*)_src)[0]; int t1 = ((int*)_src)[1]; ((int*)dst)[j] = t0; ((int*)dst)[j+1] = t1; t0 = ((int*)_src)[2]; t1 = ((int*)_src)[3]; ((int*)dst)[j+2] = t0; ((int*)dst)[j+3] = t1; } break; default: CV_Assert(0); return; } } } template static void GEMMSingleMul( const T* a_data, size_t a_step, const T* b_data, size_t b_step, const T* c_data, size_t c_step, T* d_data, size_t d_step, Size a_size, Size d_size, double alpha, double beta, int flags ) { int i, j, k, n = a_size.width, m = d_size.width, drows = d_size.height; const T *_a_data = a_data, *_b_data = b_data, *_c_data = c_data; cv::AutoBuffer _a_buf; T* a_buf = 0; size_t a_step0, a_step1, c_step0, c_step1, t_step; a_step /= sizeof(a_data[0]); b_step /= sizeof(b_data[0]); c_step /= sizeof(c_data[0]); d_step /= sizeof(d_data[0]); a_step0 = a_step; a_step1 = 1; if( !c_data ) c_step0 = c_step1 = 0; else if( !(flags & GEMM_3_T) ) c_step0 = c_step, c_step1 = 1; else c_step0 = 1, c_step1 = c_step; if( flags & GEMM_1_T ) { CV_SWAP( a_step0, a_step1, t_step ); n = a_size.height; if( a_step > 1 && n > 1 ) { _a_buf.allocate(n); a_buf = _a_buf.data(); } } if( n == 1 ) /* external product */ { cv::AutoBuffer _b_buf; T* b_buf = 0; if( a_step > 1 && a_size.height > 1 ) { _a_buf.allocate(drows); a_buf = _a_buf.data(); for( k = 0; k < drows; k++ ) a_buf[k] = a_data[a_step*k]; a_data = a_buf; } if( b_step > 1 ) { _b_buf.allocate(d_size.width); b_buf = _b_buf.data(); for( j = 0; j < d_size.width; j++ ) b_buf[j] = b_data[j*b_step]; b_data = b_buf; } for( i = 0; i < drows; i++, _c_data += c_step0, d_data += d_step ) { WT al = WT(a_data[i])*alpha; c_data = _c_data; for( j = 0; j <= d_size.width - 2; j += 2, c_data += 2*c_step1 ) { WT s0 = al*WT(b_data[j]); WT s1 = al*WT(b_data[j+1]); if( !c_data ) { d_data[j] = T(s0); d_data[j+1] = T(s1); } else { d_data[j] = T(s0 + WT(c_data[0])*beta); d_data[j+1] = T(s1 + WT(c_data[c_step1])*beta); } } for( ; j < d_size.width; j++, c_data += c_step1 ) { WT s0 = al*WT(b_data[j]); if( !c_data ) d_data[j] = T(s0); else d_data[j] = T(s0 + WT(c_data[0])*beta); } } } else if( flags & GEMM_2_T ) /* A * Bt */ { for( i = 0; i < drows; i++, _a_data += a_step0, _c_data += c_step0, d_data += d_step ) { a_data = _a_data; b_data = _b_data; c_data = _c_data; if( a_buf ) { for( k = 0; k < n; k++ ) a_buf[k] = a_data[a_step1*k]; a_data = a_buf; } for( j = 0; j < d_size.width; j++, b_data += b_step, c_data += c_step1 ) { WT s0(0), s1(0), s2(0), s3(0); k = 0; #if CV_ENABLE_UNROLLED for( ; k <= n - 4; k += 4 ) { s0 += WT(a_data[k])*WT(b_data[k]); s1 += WT(a_data[k+1])*WT(b_data[k+1]); s2 += WT(a_data[k+2])*WT(b_data[k+2]); s3 += WT(a_data[k+3])*WT(b_data[k+3]); } #endif for( ; k < n; k++ ) s0 += WT(a_data[k])*WT(b_data[k]); s0 = (s0+s1+s2+s3)*alpha; if( !c_data ) d_data[j] = T(s0); else d_data[j] = T(s0 + WT(c_data[0])*beta); } } } else if( d_size.width*sizeof(d_data[0]) <= 1600 ) { for( i = 0; i < drows; i++, _a_data += a_step0, _c_data += c_step0, d_data += d_step ) { a_data = _a_data, c_data = _c_data; if( a_buf ) { for( k = 0; k < n; k++ ) a_buf[k] = a_data[a_step1*k]; a_data = a_buf; } for( j = 0; j <= m - 4; j += 4, c_data += 4*c_step1 ) { const T* b = _b_data + j; WT s0(0), s1(0), s2(0), s3(0); for( k = 0; k < n; k++, b += b_step ) { WT a(a_data[k]); s0 += a * WT(b[0]); s1 += a * WT(b[1]); s2 += a * WT(b[2]); s3 += a * WT(b[3]); } if( !c_data ) { d_data[j] = T(s0*alpha); d_data[j+1] = T(s1*alpha); d_data[j+2] = T(s2*alpha); d_data[j+3] = T(s3*alpha); } else { s0 = s0*alpha; s1 = s1*alpha; s2 = s2*alpha; s3 = s3*alpha; d_data[j] = T(s0 + WT(c_data[0])*beta); d_data[j+1] = T(s1 + WT(c_data[c_step1])*beta); d_data[j+2] = T(s2 + WT(c_data[c_step1*2])*beta); d_data[j+3] = T(s3 + WT(c_data[c_step1*3])*beta); } } for( ; j < m; j++, c_data += c_step1 ) { const T* b = _b_data + j; WT s0(0); for( k = 0; k < n; k++, b += b_step ) s0 += WT(a_data[k]) * WT(b[0]); s0 = s0*alpha; if( !c_data ) d_data[j] = T(s0); else d_data[j] = T(s0 + WT(c_data[0])*beta); } } } else { cv::AutoBuffer _d_buf(m); WT* d_buf = _d_buf.data(); for( i = 0; i < drows; i++, _a_data += a_step0, _c_data += c_step0, d_data += d_step ) { a_data = _a_data; b_data = _b_data; c_data = _c_data; if( a_buf ) { for( k = 0; k < n; k++ ) a_buf[k] = _a_data[a_step1*k]; a_data = a_buf; } for( j = 0; j < m; j++ ) d_buf[j] = WT(0); for( k = 0; k < n; k++, b_data += b_step ) { WT al(a_data[k]); j=0; #if CV_ENABLE_UNROLLED for(; j <= m - 4; j += 4 ) { WT t0 = d_buf[j] + WT(b_data[j])*al; WT t1 = d_buf[j+1] + WT(b_data[j+1])*al; d_buf[j] = t0; d_buf[j+1] = t1; t0 = d_buf[j+2] + WT(b_data[j+2])*al; t1 = d_buf[j+3] + WT(b_data[j+3])*al; d_buf[j+2] = t0; d_buf[j+3] = t1; } #endif for( ; j < m; j++ ) d_buf[j] += WT(b_data[j])*al; } if( !c_data ) for( j = 0; j < m; j++ ) d_data[j] = T(d_buf[j]*alpha); else for( j = 0; j < m; j++, c_data += c_step1 ) { WT t = d_buf[j]*alpha; d_data[j] = T(t + WT(c_data[0])*beta); } } } } template static void GEMMBlockMul( const T* a_data, size_t a_step, const T* b_data, size_t b_step, WT* d_data, size_t d_step, Size a_size, Size d_size, int flags ) { int i, j, k, n = a_size.width, m = d_size.width; const T *_a_data = a_data, *_b_data = b_data; cv::AutoBuffer _a_buf; T* a_buf = 0; size_t a_step0, a_step1, t_step; int do_acc = flags & 16; a_step /= sizeof(a_data[0]); b_step /= sizeof(b_data[0]); d_step /= sizeof(d_data[0]); a_step0 = a_step; a_step1 = 1; if( flags & GEMM_1_T ) { CV_SWAP( a_step0, a_step1, t_step ); n = a_size.height; _a_buf.allocate(n); a_buf = _a_buf.data(); } if( flags & GEMM_2_T ) { /* second operand is transposed */ for( i = 0; i < d_size.height; i++, _a_data += a_step0, d_data += d_step ) { a_data = _a_data; b_data = _b_data; if( a_buf ) { for( k = 0; k < n; k++ ) a_buf[k] = a_data[a_step1*k]; a_data = a_buf; } for( j = 0; j < d_size.width; j++, b_data += b_step ) { WT s0 = do_acc ? d_data[j]:WT(0), s1(0); for( k = 0; k <= n - 2; k += 2 ) { s0 += WT(a_data[k])*WT(b_data[k]); s1 += WT(a_data[k+1])*WT(b_data[k+1]); } for( ; k < n; k++ ) s0 += WT(a_data[k])*WT(b_data[k]); d_data[j] = s0 + s1; } } } else { for( i = 0; i < d_size.height; i++, _a_data += a_step0, d_data += d_step ) { a_data = _a_data, b_data = _b_data; if( a_buf ) { for( k = 0; k < n; k++ ) a_buf[k] = a_data[a_step1*k]; a_data = a_buf; } for( j = 0; j <= m - 4; j += 4 ) { WT s0, s1, s2, s3; const T* b = b_data + j; if( do_acc ) { s0 = d_data[j]; s1 = d_data[j+1]; s2 = d_data[j+2]; s3 = d_data[j+3]; } else s0 = s1 = s2 = s3 = WT(0); for( k = 0; k < n; k++, b += b_step ) { WT a(a_data[k]); s0 += a * WT(b[0]); s1 += a * WT(b[1]); s2 += a * WT(b[2]); s3 += a * WT(b[3]); } d_data[j] = s0; d_data[j+1] = s1; d_data[j+2] = s2; d_data[j+3] = s3; } for( ; j < m; j++ ) { const T* b = b_data + j; WT s0 = do_acc ? d_data[j] : WT(0); for( k = 0; k < n; k++, b += b_step ) s0 += WT(a_data[k]) * WT(b[0]); d_data[j] = s0; } } } } template static void GEMMStore( const T* c_data, size_t c_step, const WT* d_buf, size_t d_buf_step, T* d_data, size_t d_step, Size d_size, double alpha, double beta, int flags ) { const T* _c_data = c_data; int j; size_t c_step0, c_step1; c_step /= sizeof(c_data[0]); d_buf_step /= sizeof(d_buf[0]); d_step /= sizeof(d_data[0]); if( !c_data ) c_step0 = c_step1 = 0; else if( !(flags & GEMM_3_T) ) c_step0 = c_step, c_step1 = 1; else c_step0 = 1, c_step1 = c_step; for( ; d_size.height--; _c_data += c_step0, d_buf += d_buf_step, d_data += d_step ) { if( _c_data ) { c_data = _c_data; j=0; #if CV_ENABLE_UNROLLED for(; j <= d_size.width - 4; j += 4, c_data += 4*c_step1 ) { WT t0 = alpha*d_buf[j]; WT t1 = alpha*d_buf[j+1]; t0 += beta*WT(c_data[0]); t1 += beta*WT(c_data[c_step1]); d_data[j] = T(t0); d_data[j+1] = T(t1); t0 = alpha*d_buf[j+2]; t1 = alpha*d_buf[j+3]; t0 += beta*WT(c_data[c_step1*2]); t1 += beta*WT(c_data[c_step1*3]); d_data[j+2] = T(t0); d_data[j+3] = T(t1); } #endif for( ; j < d_size.width; j++, c_data += c_step1 ) { WT t0 = alpha*d_buf[j]; d_data[j] = T(t0 + WT(c_data[0])*beta); } } else { j = 0; #if CV_ENABLE_UNROLLED for( ; j <= d_size.width - 4; j += 4 ) { WT t0 = alpha*d_buf[j]; WT t1 = alpha*d_buf[j+1]; d_data[j] = T(t0); d_data[j+1] = T(t1); t0 = alpha*d_buf[j+2]; t1 = alpha*d_buf[j+3]; d_data[j+2] = T(t0); d_data[j+3] = T(t1); } #endif for( ; j < d_size.width; j++ ) d_data[j] = T(alpha*d_buf[j]); } } } typedef void (*GEMMSingleMulFunc)( const void* src1, size_t step1, const void* src2, size_t step2, const void* src3, size_t step3, void* dst, size_t dststep, Size srcsize, Size dstsize, double alpha, double beta, int flags ); typedef void (*GEMMBlockMulFunc)( const void* src1, size_t step1, const void* src2, size_t step2, void* dst, size_t dststep, Size srcsize, Size dstsize, int flags ); typedef void (*GEMMStoreFunc)( const void* src1, size_t step1, const void* src2, size_t step2, void* dst, size_t dststep, Size dstsize, double alpha, double beta, int flags ); static void GEMMSingleMul_32f( const float* a_data, size_t a_step, const float* b_data, size_t b_step, const float* c_data, size_t c_step, float* d_data, size_t d_step, Size a_size, Size d_size, double alpha, double beta, int flags ) { GEMMSingleMul(a_data, a_step, b_data, b_step, c_data, c_step, d_data, d_step, a_size, d_size, alpha, beta, flags); } static void GEMMSingleMul_64f( const double* a_data, size_t a_step, const double* b_data, size_t b_step, const double* c_data, size_t c_step, double* d_data, size_t d_step, Size a_size, Size d_size, double alpha, double beta, int flags ) { GEMMSingleMul(a_data, a_step, b_data, b_step, c_data, c_step, d_data, d_step, a_size, d_size, alpha, beta, flags); } static void GEMMSingleMul_32fc( const Complexf* a_data, size_t a_step, const Complexf* b_data, size_t b_step, const Complexf* c_data, size_t c_step, Complexf* d_data, size_t d_step, Size a_size, Size d_size, double alpha, double beta, int flags ) { GEMMSingleMul(a_data, a_step, b_data, b_step, c_data, c_step, d_data, d_step, a_size, d_size, alpha, beta, flags); } static void GEMMSingleMul_64fc( const Complexd* a_data, size_t a_step, const Complexd* b_data, size_t b_step, const Complexd* c_data, size_t c_step, Complexd* d_data, size_t d_step, Size a_size, Size d_size, double alpha, double beta, int flags ) { GEMMSingleMul(a_data, a_step, b_data, b_step, c_data, c_step, d_data, d_step, a_size, d_size, alpha, beta, flags); } static void GEMMBlockMul_32f( const float* a_data, size_t a_step, const float* b_data, size_t b_step, double* d_data, size_t d_step, Size a_size, Size d_size, int flags ) { GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags); } static void GEMMBlockMul_64f( const double* a_data, size_t a_step, const double* b_data, size_t b_step, double* d_data, size_t d_step, Size a_size, Size d_size, int flags ) { GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags); } static void GEMMBlockMul_32fc( const Complexf* a_data, size_t a_step, const Complexf* b_data, size_t b_step, Complexd* d_data, size_t d_step, Size a_size, Size d_size, int flags ) { GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags); } static void GEMMBlockMul_64fc( const Complexd* a_data, size_t a_step, const Complexd* b_data, size_t b_step, Complexd* d_data, size_t d_step, Size a_size, Size d_size, int flags ) { GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags); } static void GEMMStore_32f( const float* c_data, size_t c_step, const double* d_buf, size_t d_buf_step, float* d_data, size_t d_step, Size d_size, double alpha, double beta, int flags ) { GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags); } static void GEMMStore_64f( const double* c_data, size_t c_step, const double* d_buf, size_t d_buf_step, double* d_data, size_t d_step, Size d_size, double alpha, double beta, int flags ) { GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags); } static void GEMMStore_32fc( const Complexf* c_data, size_t c_step, const Complexd* d_buf, size_t d_buf_step, Complexf* d_data, size_t d_step, Size d_size, double alpha, double beta, int flags ) { GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags); } static void GEMMStore_64fc( const Complexd* c_data, size_t c_step, const Complexd* d_buf, size_t d_buf_step, Complexd* d_data, size_t d_step, Size d_size, double alpha, double beta, int flags ) { GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags); } static void gemmImpl( Mat A, Mat B, double alpha, Mat C, double beta, Mat D, int flags ) { CV_INSTRUMENT_REGION(); const int block_lin_size = 128; const int block_size = block_lin_size * block_lin_size; static double zero[] = {0,0,0,0}; static float zerof[] = {0,0,0,0}; Size a_size = A.size(), d_size; int i, len = 0, type = A.type(); switch( flags & (GEMM_1_T|GEMM_2_T) ) { case 0: d_size = Size( B.cols, a_size.height ); len = B.rows; break; case 1: d_size = Size( B.cols, a_size.width ); len = B.rows; break; case 2: d_size = Size( B.rows, a_size.height ); len = B.cols; break; case 3: d_size = Size( B.rows, a_size.width ); len = B.cols; break; } if( flags == 0 && 2 <= len && len <= 4 && (len == d_size.width || len == d_size.height) ) { if( type == CV_32F ) { float* d = D.ptr(); const float *a = A.ptr(), *b = B.ptr(), *c = (const float*)C.data; size_t d_step = D.step/sizeof(d[0]), a_step = A.step/sizeof(a[0]), b_step = B.step/sizeof(b[0]), c_step = C.data ? C.step/sizeof(c[0]) : 0; if( !c ) c = zerof; switch( len ) { case 2: if( len == d_size.width && b != d ) { for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) { float t0 = a[0]*b[0] + a[1]*b[b_step]; float t1 = a[0]*b[1] + a[1]*b[b_step+1]; d[0] = (float)(t0*alpha + c[0]*beta); d[1] = (float)(t1*alpha + c[1]*beta); } } else if( a != d ) { int c_step0 = 1; if( c == zerof ) { c_step0 = 0; c_step = 1; } for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) { float t0 = a[0]*b[0] + a[1]*b[b_step]; float t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step]; d[0] = (float)(t0*alpha + c[0]*beta); d[d_step] = (float)(t1*alpha + c[c_step]*beta); } } else break; return; case 3: if( len == d_size.width && b != d ) { for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) { float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2]; float t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1]; float t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2]; d[0] = (float)(t0*alpha + c[0]*beta); d[1] = (float)(t1*alpha + c[1]*beta); d[2] = (float)(t2*alpha + c[2]*beta); } } else if( a != d ) { int c_step0 = 1; if( c == zerof ) { c_step0 = 0; c_step = 1; } for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) { float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2]; float t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + a[a_step+2]*b[b_step*2]; float t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + a[a_step*2+2]*b[b_step*2]; d[0] = (float)(t0*alpha + c[0]*beta); d[d_step] = (float)(t1*alpha + c[c_step]*beta); d[d_step*2] = (float)(t2*alpha + c[c_step*2]*beta); } } else break; return; case 4: if( len == d_size.width && b != d ) { for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) { float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3]; float t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1] + a[3]*b[b_step*3+1]; float t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2] + a[3]*b[b_step*3+2]; float t3 = a[0]*b[3] + a[1]*b[b_step+3] + a[2]*b[b_step*2+3] + a[3]*b[b_step*3+3]; d[0] = (float)(t0*alpha + c[0]*beta); d[1] = (float)(t1*alpha + c[1]*beta); d[2] = (float)(t2*alpha + c[2]*beta); d[3] = (float)(t3*alpha + c[3]*beta); } } else if( len <= 16 && a != d ) { int c_step0 = 1; if( c == zerof ) { c_step0 = 0; c_step = 1; } for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) { float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3]; float t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + a[a_step+2]*b[b_step*2] + a[a_step+3]*b[b_step*3]; float t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + a[a_step*2+2]*b[b_step*2] + a[a_step*2+3]*b[b_step*3]; float t3 = a[a_step*3]*b[0] + a[a_step*3+1]*b[b_step] + a[a_step*3+2]*b[b_step*2] + a[a_step*3+3]*b[b_step*3]; d[0] = (float)(t0*alpha + c[0]*beta); d[d_step] = (float)(t1*alpha + c[c_step]*beta); d[d_step*2] = (float)(t2*alpha + c[c_step*2]*beta); d[d_step*3] = (float)(t3*alpha + c[c_step*3]*beta); } } else break; return; } } if( type == CV_64F ) { double* d = D.ptr(); const double *a = A.ptr(), *b = B.ptr(), *c = (const double*)C.data; size_t d_step = D.step/sizeof(d[0]), a_step = A.step/sizeof(a[0]), b_step = B.step/sizeof(b[0]), c_step = C.data ? C.step/sizeof(c[0]) : 0; if( !c ) c = zero; switch( len ) { case 2: if( len == d_size.width && b != d ) { for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) { double t0 = a[0]*b[0] + a[1]*b[b_step]; double t1 = a[0]*b[1] + a[1]*b[b_step+1]; d[0] = t0*alpha + c[0]*beta; d[1] = t1*alpha + c[1]*beta; } } else if( a != d ) { int c_step0 = 1; if( c == zero ) { c_step0 = 0; c_step = 1; } for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) { double t0 = a[0]*b[0] + a[1]*b[b_step]; double t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step]; d[0] = t0*alpha + c[0]*beta; d[d_step] = t1*alpha + c[c_step]*beta; } } else break; return; case 3: if( len == d_size.width && b != d ) { for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) { double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2]; double t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1]; double t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2]; d[0] = t0*alpha + c[0]*beta; d[1] = t1*alpha + c[1]*beta; d[2] = t2*alpha + c[2]*beta; } } else if( a != d ) { int c_step0 = 1; if( c == zero ) { c_step0 = 0; c_step = 1; } for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) { double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2]; double t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + a[a_step+2]*b[b_step*2]; double t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + a[a_step*2+2]*b[b_step*2]; d[0] = t0*alpha + c[0]*beta; d[d_step] = t1*alpha + c[c_step]*beta; d[d_step*2] = t2*alpha + c[c_step*2]*beta; } } else break; return; case 4: if( len == d_size.width && b != d ) { for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) { double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3]; double t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1] + a[3]*b[b_step*3+1]; double t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2] + a[3]*b[b_step*3+2]; double t3 = a[0]*b[3] + a[1]*b[b_step+3] + a[2]*b[b_step*2+3] + a[3]*b[b_step*3+3]; d[0] = t0*alpha + c[0]*beta; d[1] = t1*alpha + c[1]*beta; d[2] = t2*alpha + c[2]*beta; d[3] = t3*alpha + c[3]*beta; } } else if( d_size.width <= 16 && a != d ) { int c_step0 = 1; if( c == zero ) { c_step0 = 0; c_step = 1; } for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) { double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3]; double t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + a[a_step+2]*b[b_step*2] + a[a_step+3]*b[b_step*3]; double t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + a[a_step*2+2]*b[b_step*2] + a[a_step*2+3]*b[b_step*3]; double t3 = a[a_step*3]*b[0] + a[a_step*3+1]*b[b_step] + a[a_step*3+2]*b[b_step*2] + a[a_step*3+3]*b[b_step*3]; d[0] = t0*alpha + c[0]*beta; d[d_step] = t1*alpha + c[c_step]*beta; d[d_step*2] = t2*alpha + c[c_step*2]*beta; d[d_step*3] = t3*alpha + c[c_step*3]*beta; } } else break; return; } } } { size_t b_step = B.step; GEMMSingleMulFunc singleMulFunc; GEMMBlockMulFunc blockMulFunc; GEMMStoreFunc storeFunc; Mat *matD = &D; const uchar* Cdata = C.data; size_t Cstep = C.data ? (size_t)C.step : 0; AutoBuffer buf; if( type == CV_32FC1 ) { singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_32f; blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_32f; storeFunc = (GEMMStoreFunc)GEMMStore_32f; } else if( type == CV_64FC1 ) { singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_64f; blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_64f; storeFunc = (GEMMStoreFunc)GEMMStore_64f; } else if( type == CV_32FC2 ) { singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_32fc; blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_32fc; storeFunc = (GEMMStoreFunc)GEMMStore_32fc; } else { CV_Assert( type == CV_64FC2 ); singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_64fc; blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_64fc; storeFunc = (GEMMStoreFunc)GEMMStore_64fc; } if( (d_size.width == 1 || len == 1) && !(flags & GEMM_2_T) && B.isContinuous() ) { b_step = d_size.width == 1 ? 0 : CV_ELEM_SIZE(type); flags |= GEMM_2_T; } /*if( (d_size.width | d_size.height | len) >= 16 && icvBLAS_GEMM_32f_p != 0 ) { blas_func = type == CV_32FC1 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_32f_p : type == CV_64FC1 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_64f_p : type == CV_32FC2 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_32fc_p : type == CV_64FC2 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_64fc_p : 0; } if( blas_func ) { const char* transa = flags & GEMM_1_T ? "t" : "n"; const char* transb = flags & GEMM_2_T ? "t" : "n"; int lda, ldb, ldd; if( C->data.ptr ) { if( C->data.ptr != D->data.ptr ) { if( !(flags & GEMM_3_T) ) cvCopy( C, D ); else cvTranspose( C, D ); } } if( CV_MAT_DEPTH(type) == CV_32F ) { Complex32f _alpha, _beta; lda = A->step/sizeof(float); ldb = b_step/sizeof(float); ldd = D->step/sizeof(float); _alpha.re = (float)alpha; _alpha.im = 0; _beta.re = C->data.ptr ? (float)beta : 0; _beta.im = 0; if( CV_MAT_CN(type) == 2 ) lda /= 2, ldb /= 2, ldd /= 2; blas_func( transb, transa, &d_size.width, &d_size.height, &len, &_alpha, B->data.ptr, &ldb, A->data.ptr, &lda, &_beta, D->data.ptr, &ldd ); } else { CvComplex64f _alpha, _beta; lda = A->step/sizeof(double); ldb = b_step/sizeof(double); ldd = D->step/sizeof(double); _alpha.re = alpha; _alpha.im = 0; _beta.re = C->data.ptr ? beta : 0; _beta.im = 0; if( CV_MAT_CN(type) == 2 ) lda /= 2, ldb /= 2, ldd /= 2; blas_func( transb, transa, &d_size.width, &d_size.height, &len, &_alpha, B->data.ptr, &ldb, A->data.ptr, &lda, &_beta, D->data.ptr, &ldd ); } } else*/ if( ((d_size.height <= block_lin_size/2 || d_size.width <= block_lin_size/2) && len <= 10000) || len <= 10 || (d_size.width <= block_lin_size && d_size.height <= block_lin_size && len <= block_lin_size) ) { singleMulFunc( A.ptr(), A.step, B.ptr(), b_step, Cdata, Cstep, matD->ptr(), matD->step, a_size, d_size, alpha, beta, flags ); } else { int is_a_t = flags & GEMM_1_T; int is_b_t = flags & GEMM_2_T; int elem_size = CV_ELEM_SIZE(type); int dk0_1, dk0_2; size_t a_buf_size = 0, b_buf_size, d_buf_size; uchar* a_buf = 0; uchar* b_buf = 0; uchar* d_buf = 0; int j, k, di = 0, dj = 0, dk = 0; int dm0, dn0, dk0; size_t a_step0, a_step1, b_step0, b_step1, c_step0, c_step1; int work_elem_size = elem_size << (CV_MAT_DEPTH(type) == CV_32F ? 1 : 0); if( !is_a_t ) a_step0 = A.step, a_step1 = elem_size; else a_step0 = elem_size, a_step1 = A.step; if( !is_b_t ) b_step0 = b_step, b_step1 = elem_size; else b_step0 = elem_size, b_step1 = b_step; if( C.empty() ) { c_step0 = c_step1 = 0; flags &= ~GEMM_3_T; } else if( !(flags & GEMM_3_T) ) c_step0 = C.step, c_step1 = elem_size; else c_step0 = elem_size, c_step1 = C.step; dm0 = std::min( block_lin_size, d_size.height ); dn0 = std::min( block_lin_size, d_size.width ); dk0_1 = block_size / dm0; dk0_2 = block_size / dn0; dk0 = std::min( dk0_1, dk0_2 ); dk0 = std::min( dk0, len ); if( dk0*dm0 > block_size ) dm0 = block_size / dk0; if( dk0*dn0 > block_size ) dn0 = block_size / dk0; dk0_1 = (dn0+dn0/8+2) & -2; b_buf_size = (size_t)(dk0+dk0/8+1)*dk0_1*elem_size; d_buf_size = (size_t)(dk0+dk0/8+1)*dk0_1*work_elem_size; if( is_a_t ) { a_buf_size = (size_t)(dm0+dm0/8+1)*((dk0+dk0/8+2)&-2)*elem_size; flags &= ~GEMM_1_T; } buf.allocate(d_buf_size + b_buf_size + a_buf_size); d_buf = buf.data(); b_buf = d_buf + d_buf_size; if( is_a_t ) a_buf = b_buf + b_buf_size; for( i = 0; i < d_size.height; i += di ) { di = dm0; if( i + di >= d_size.height || 8*(i + di) + di > 8*d_size.height ) di = d_size.height - i; for( j = 0; j < d_size.width; j += dj ) { uchar* _d = matD->ptr() + i*matD->step + j*elem_size; const uchar* _c = Cdata + i*c_step0 + j*c_step1; size_t _d_step = matD->step; dj = dn0; if( j + dj >= d_size.width || 8*(j + dj) + dj > 8*d_size.width ) dj = d_size.width - j; flags &= 15; if( dk0 < len ) { _d = d_buf; _d_step = dj*work_elem_size; } for( k = 0; k < len; k += dk ) { const uchar* _a = A.ptr() + i*a_step0 + k*a_step1; size_t _a_step = A.step; const uchar* _b = B.ptr() + k*b_step0 + j*b_step1; size_t _b_step = b_step; Size a_bl_size; dk = dk0; if( k + dk >= len || 8*(k + dk) + dk > 8*len ) dk = len - k; if( !is_a_t ) a_bl_size.width = dk, a_bl_size.height = di; else a_bl_size.width = di, a_bl_size.height = dk; if( a_buf && is_a_t ) { _a_step = dk*elem_size; GEMM_TransposeBlock( _a, A.step, a_buf, _a_step, a_bl_size, elem_size ); std::swap( a_bl_size.width, a_bl_size.height ); _a = a_buf; } if( dj < d_size.width ) { Size b_size; if( !is_b_t ) b_size.width = dj, b_size.height = dk; else b_size.width = dk, b_size.height = dj; _b_step = b_size.width*elem_size; GEMM_CopyBlock( _b, b_step, b_buf, _b_step, b_size, elem_size ); _b = b_buf; } if( dk0 < len ) blockMulFunc( _a, _a_step, _b, _b_step, _d, _d_step, a_bl_size, Size(dj,di), flags ); else singleMulFunc( _a, _a_step, _b, _b_step, _c, Cstep, _d, _d_step, a_bl_size, Size(dj,di), alpha, beta, flags ); flags |= 16; } if( dk0 < len ) storeFunc( _c, Cstep, _d, _d_step, matD->ptr(i) + j*elem_size, matD->step, Size(dj,di), alpha, beta, flags ); } } } } } template inline static void callGemmImpl(const fptype *src1, size_t src1_step, const fptype *src2, size_t src2_step, fptype alpha, const fptype *src3, size_t src3_step, fptype beta, fptype *dst, size_t dst_step, int m_a, int n_a, int n_d, int flags, int type) { CV_StaticAssert(GEMM_1_T == CV_HAL_GEMM_1_T, "Incompatible GEMM_1_T flag in HAL"); CV_StaticAssert(GEMM_2_T == CV_HAL_GEMM_2_T, "Incompatible GEMM_2_T flag in HAL"); CV_StaticAssert(GEMM_3_T == CV_HAL_GEMM_3_T, "Incompatible GEMM_3_T flag in HAL"); int b_m, b_n, c_m, c_n, m_d; if(flags & GEMM_2_T) { b_m = n_d; if(flags & GEMM_1_T ) { b_n = m_a; m_d = n_a; } else { b_n = n_a; m_d = m_a; } } else { b_n = n_d; if(flags & GEMM_1_T ) { b_m = m_a; m_d = n_a; } else { m_d = m_a; b_m = n_a; } } if(flags & GEMM_3_T) { c_m = n_d; c_n = m_d; } else { c_m = m_d; c_n = n_d; } Mat A, B, C; if(src1 != NULL) A = Mat(m_a, n_a, type, (void*)src1, src1_step); if(src2 != NULL) B = Mat(b_m, b_n, type, (void*)src2, src2_step); if(src3 != NULL && beta != 0.0) C = Mat(c_m, c_n, type, (void*)src3, src3_step); Mat D(m_d, n_d, type, (void*)dst, dst_step); gemmImpl(A, B, alpha, C, beta, D, flags); } void gemm32f(const float* src1, size_t src1_step, const float* src2, size_t src2_step, float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags) { CV_INSTRUMENT_REGION(); callGemmImpl(src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags, CV_32F); } void gemm64f(const double* src1, size_t src1_step, const double* src2, size_t src2_step, double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags) { CV_INSTRUMENT_REGION(); callGemmImpl(src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags, CV_64F); } void gemm32fc(const float* src1, size_t src1_step, const float* src2, size_t src2_step, float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags) { CV_INSTRUMENT_REGION(); callGemmImpl(src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags, CV_32FC2); } void gemm64fc(const double* src1, size_t src1_step, const double* src2, size_t src2_step, double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, int m_a, int n_a, int n_d, int flags) { CV_INSTRUMENT_REGION(); callGemmImpl(src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags, CV_64FC2); } #endif // !defined(CV_GEMM_BASELINE_ONLY) || defined(CV_CPU_BASELINE_MODE) /****************************************************************************************\ * Transform * \****************************************************************************************/ template static void transform_( const T* src, T* dst, const WT* m, int len, int scn, int dcn ) { int x; if( scn == 2 && dcn == 2 ) { for( x = 0; x < len*2; x += 2 ) { WT v0 = src[x], v1 = src[x+1]; T t0 = saturate_cast(m[0]*v0 + m[1]*v1 + m[2]); T t1 = saturate_cast(m[3]*v0 + m[4]*v1 + m[5]); dst[x] = t0; dst[x+1] = t1; } } else if( scn == 3 && dcn == 3 ) { for( x = 0; x < len*3; x += 3 ) { WT v0 = src[x], v1 = src[x+1], v2 = src[x+2]; T t0 = saturate_cast(m[0]*v0 + m[1]*v1 + m[2]*v2 + m[3]); T t1 = saturate_cast(m[4]*v0 + m[5]*v1 + m[6]*v2 + m[7]); T t2 = saturate_cast(m[8]*v0 + m[9]*v1 + m[10]*v2 + m[11]); dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; } } else if( scn == 3 && dcn == 1 ) { for( x = 0; x < len; x++, src += 3 ) dst[x] = saturate_cast(m[0]*src[0] + m[1]*src[1] + m[2]*src[2] + m[3]); } else if( scn == 4 && dcn == 4 ) { for( x = 0; x < len*4; x += 4 ) { WT v0 = src[x], v1 = src[x+1], v2 = src[x+2], v3 = src[x+3]; T t0 = saturate_cast(m[0]*v0 + m[1]*v1 + m[2]*v2 + m[3]*v3 + m[4]); T t1 = saturate_cast(m[5]*v0 + m[6]*v1 + m[7]*v2 + m[8]*v3 + m[9]); dst[x] = t0; dst[x+1] = t1; t0 = saturate_cast(m[10]*v0 + m[11]*v1 + m[12]*v2 + m[13]*v3 + m[14]); t1 = saturate_cast(m[15]*v0 + m[16]*v1 + m[17]*v2 + m[18]*v3 + m[19]); dst[x+2] = t0; dst[x+3] = t1; } } else { for( x = 0; x < len; x++, src += scn, dst += dcn ) { const WT* _m = m; int j, k; for( j = 0; j < dcn; j++, _m += scn + 1 ) { WT s = _m[scn]; for( k = 0; k < scn; k++ ) s += _m[k]*src[k]; dst[j] = saturate_cast(s); } } } } static void transform_8u( const uchar* src, uchar* dst, const float* m, int len, int scn, int dcn ) { #if (CV_SIMD || CV_SIMD_SCALABLE) const int BITS = 10, SCALE = 1 << BITS; const float MAX_M = (float)(1 << (15 - BITS)); if( scn == 3 && dcn == 3 && std::abs(m[0]) < MAX_M && std::abs(m[1]) < MAX_M && std::abs(m[ 2]) < MAX_M*256 && std::abs(m[ 3]) < MAX_M*256 && std::abs(m[4]) < MAX_M && std::abs(m[5]) < MAX_M && std::abs(m[ 6]) < MAX_M*256 && std::abs(m[ 7]) < MAX_M*256 && std::abs(m[8]) < MAX_M && std::abs(m[9]) < MAX_M && std::abs(m[10]) < MAX_M*256 && std::abs(m[11]) < MAX_M*256 ) { const int nChannels = 3; union { short s[6]; int p[3]; } m16; m16.s[0] = saturate_cast(m[0] * SCALE); m16.s[1] = saturate_cast(m[1] * SCALE); m16.s[2] = saturate_cast(m[4] * SCALE); m16.s[3] = saturate_cast(m[5] * SCALE); m16.s[4] = saturate_cast(m[8] * SCALE); m16.s[5] = saturate_cast(m[9] * SCALE); int m32[] = {saturate_cast(m[ 2] * SCALE), saturate_cast(m[ 3] * SCALE), saturate_cast(m[ 6] * SCALE), saturate_cast(m[ 7] * SCALE), saturate_cast(m[10] * SCALE), saturate_cast(m[11] * SCALE)}; v_int16 m01 = v_reinterpret_as_s16(vx_setall_s32(m16.p[0])); v_int32 m2 = vx_setall_s32(m32[0]); v_int32 m3 = vx_setall_s32(m32[1]); v_int16 m45 = v_reinterpret_as_s16(vx_setall_s32(m16.p[1])); v_int32 m6 = vx_setall_s32(m32[2]); v_int32 m7 = vx_setall_s32(m32[3]); v_int16 m89 = v_reinterpret_as_s16(vx_setall_s32(m16.p[2])); v_int32 m10 = vx_setall_s32(m32[4]); v_int32 m11 = vx_setall_s32(m32[5]); int x = 0; for (; x <= (len - VTraits::vlanes()) * nChannels; x += VTraits::vlanes() * nChannels) { v_uint8 b, g, r; v_load_deinterleave(src + x, b, g, r); v_uint8 bgl, bgh; v_zip(b, g, bgl, bgh); v_uint16 rl, rh; v_expand(r, rl, rh); v_int16 dbl, dbh, dgl, dgh, drl, drh; v_uint16 p0, p2; v_int32 p1, p3; v_expand(bgl, p0, p2); v_expand(v_reinterpret_as_s16(rl), p1, p3); dbl = v_rshr_pack(v_add(v_add(v_dotprod(v_reinterpret_as_s16(p0), m01), v_mul(p1, m2)), m3), v_add(v_add(v_dotprod(v_reinterpret_as_s16(p2), m01), v_mul(p3, m2)), m3)); dgl = v_rshr_pack(v_add(v_add(v_dotprod(v_reinterpret_as_s16(p0), m45), v_mul(p1, m6)), m7), v_add(v_add(v_dotprod(v_reinterpret_as_s16(p2), m45), v_mul(p3, m6)), m7)); drl = v_rshr_pack(v_add(v_add(v_dotprod(v_reinterpret_as_s16(p0), m89), v_mul(p1, m10)), m11), v_add(v_add(v_dotprod(v_reinterpret_as_s16(p2), m89), v_mul(p3, m10)), m11)); v_expand(bgh, p0, p2); v_expand(v_reinterpret_as_s16(rh), p1, p3); dbh = v_rshr_pack(v_add(v_add(v_dotprod(v_reinterpret_as_s16(p0), m01), v_mul(p1, m2)), m3), v_add(v_add(v_dotprod(v_reinterpret_as_s16(p2), m01), v_mul(p3, m2)), m3)); dgh = v_rshr_pack(v_add(v_add(v_dotprod(v_reinterpret_as_s16(p0), m45), v_mul(p1, m6)), m7), v_add(v_add(v_dotprod(v_reinterpret_as_s16(p2), m45), v_mul(p3, m6)), m7)); drh = v_rshr_pack(v_add(v_add(v_dotprod(v_reinterpret_as_s16(p0), m89), v_mul(p1, m10)), m11), v_add(v_add(v_dotprod(v_reinterpret_as_s16(p2), m89), v_mul(p3, m10)), m11)); v_store_interleave(dst + x, v_pack_u(dbl, dbh), v_pack_u(dgl, dgh), v_pack_u(drl, drh)); } m32[1] = saturate_cast((m[3] + 0.5f)*SCALE); m32[3] = saturate_cast((m[7] + 0.5f)*SCALE); m32[5] = saturate_cast((m[11] + 0.5f)*SCALE); for( ; x < len * nChannels; x += nChannels ) { int v0 = src[x], v1 = src[x+1], v2 = src[x+2]; uchar t0 = saturate_cast((m16.s[0] * v0 + m16.s[1] * v1 + m32[0] * v2 + m32[1]) >> BITS); uchar t1 = saturate_cast((m16.s[2] * v0 + m16.s[3] * v1 + m32[2] * v2 + m32[3]) >> BITS); uchar t2 = saturate_cast((m16.s[4] * v0 + m16.s[5] * v1 + m32[4] * v2 + m32[5]) >> BITS); dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; } vx_cleanup(); return; } #endif transform_(src, dst, m, len, scn, dcn); } static void transform_16u( const ushort* src, ushort* dst, const float* m, int len, int scn, int dcn ) { #if (CV_SIMD || CV_SIMD_SCALABLE) if( scn == 3 && dcn == 3 ) { int x = 0; #if CV_SIMD_WIDTH > 16 v_float32 m0 = vx_setall_f32(m[ 0]); v_float32 m1 = vx_setall_f32(m[ 1]); v_float32 m2 = vx_setall_f32(m[ 2]); v_float32 m3 = vx_setall_f32(m[ 3] - 32768.f); v_float32 m4 = vx_setall_f32(m[ 4]); v_float32 m5 = vx_setall_f32(m[ 5]); v_float32 m6 = vx_setall_f32(m[ 6]); v_float32 m7 = vx_setall_f32(m[ 7] - 32768.f); v_float32 m8 = vx_setall_f32(m[ 8]); v_float32 m9 = vx_setall_f32(m[ 9]); v_float32 m10 = vx_setall_f32(m[10]); v_float32 m11 = vx_setall_f32(m[11] - 32768.f); v_int16 delta = vx_setall_s16(-32768); for (; x <= (len - VTraits::vlanes())*3; x += VTraits::vlanes()*3) { v_uint16 b, g, r; v_load_deinterleave(src + x, b, g, r); v_uint32 bl, bh, gl, gh, rl, rh; v_expand(b, bl, bh); v_expand(g, gl, gh); v_expand(r, rl, rh); v_int16 db, dg, dr; db = v_add_wrap(v_pack(v_round(v_muladd(v_cvt_f32(v_reinterpret_as_s32(bl)), m0, v_muladd(v_cvt_f32(v_reinterpret_as_s32(gl)), m1, v_muladd(v_cvt_f32(v_reinterpret_as_s32(rl)), m2, m3)))), v_round(v_muladd(v_cvt_f32(v_reinterpret_as_s32(bh)), m0, v_muladd(v_cvt_f32(v_reinterpret_as_s32(gh)), m1, v_muladd(v_cvt_f32(v_reinterpret_as_s32(rh)), m2, m3))))), delta); dg = v_add_wrap(v_pack(v_round(v_muladd(v_cvt_f32(v_reinterpret_as_s32(bl)), m4, v_muladd(v_cvt_f32(v_reinterpret_as_s32(gl)), m5, v_muladd(v_cvt_f32(v_reinterpret_as_s32(rl)), m6, m7)))), v_round(v_muladd(v_cvt_f32(v_reinterpret_as_s32(bh)), m4, v_muladd(v_cvt_f32(v_reinterpret_as_s32(gh)), m5, v_muladd(v_cvt_f32(v_reinterpret_as_s32(rh)), m6, m7))))), delta); dr = v_add_wrap(v_pack(v_round(v_muladd(v_cvt_f32(v_reinterpret_as_s32(bl)), m8, v_muladd(v_cvt_f32(v_reinterpret_as_s32(gl)), m9, v_muladd(v_cvt_f32(v_reinterpret_as_s32(rl)), m10, m11)))), v_round(v_muladd(v_cvt_f32(v_reinterpret_as_s32(bh)), m8, v_muladd(v_cvt_f32(v_reinterpret_as_s32(gh)), m9, v_muladd(v_cvt_f32(v_reinterpret_as_s32(rh)), m10, m11))))), delta); v_store_interleave(dst + x, v_reinterpret_as_u16(db), v_reinterpret_as_u16(dg), v_reinterpret_as_u16(dr)); } #endif #if CV_SIMD128 v_float32x4 _m0l(m[0], m[4], m[ 8], 0.f); v_float32x4 _m1l(m[1], m[5], m[ 9], 0.f); v_float32x4 _m2l(m[2], m[6], m[10], 0.f); v_float32x4 _m3l(m[3] - 32768.f, m[7] - 32768.f, m[11] - 32768.f, 0.f); v_float32x4 _m0h = v_rotate_left<1>(_m0l); v_float32x4 _m1h = v_rotate_left<1>(_m1l); v_float32x4 _m2h = v_rotate_left<1>(_m2l); v_float32x4 _m3h = v_rotate_left<1>(_m3l); v_int16x8 _delta(0, -32768, -32768, -32768, -32768, -32768, -32768, 0); for( ; x <= len*3 - VTraits::vlanes(); x += 3*VTraits::vlanes()/4 ) v_store(dst + x, v_rotate_right<1>(v_reinterpret_as_u16(v_add_wrap(v_pack( v_round(v_matmuladd(v_cvt_f32(v_reinterpret_as_s32(v_load_expand(src + x ))), _m0h, _m1h, _m2h, _m3h)), v_round(v_matmuladd(v_cvt_f32(v_reinterpret_as_s32(v_load_expand(src + x + 3))), _m0l, _m1l, _m2l, _m3l))), _delta)))); #endif //CV_SIMD128 for( ; x < len * 3; x += 3 ) { float v0 = src[x], v1 = src[x + 1], v2 = src[x + 2]; ushort t0 = saturate_cast(m[0] * v0 + m[1] * v1 + m[ 2] * v2 + m[ 3]); ushort t1 = saturate_cast(m[4] * v0 + m[5] * v1 + m[ 6] * v2 + m[ 7]); ushort t2 = saturate_cast(m[8] * v0 + m[9] * v1 + m[10] * v2 + m[11]); dst[x] = t0; dst[x + 1] = t1; dst[x + 2] = t2; } vx_cleanup(); return; } #endif transform_(src, dst, m, len, scn, dcn); } static void transform_32f( const float* src, float* dst, const float* m, int len, int scn, int dcn ) { #if (CV_SIMD || CV_SIMD_SCALABLE) && !defined(__aarch64__) && !defined(_M_ARM64) int x = 0; if( scn == 3 && dcn == 3 ) { int idx[VTraits::max_nlanes/2]; for( int i = 0; i < VTraits::vlanes()/4; i++ ) { idx[i] = 3*i; idx[i + VTraits::vlanes()/4] = 0; } float _m[] = { m[0], m[4], m[ 8], 0.f, m[1], m[5], m[ 9], 0.f, m[2], m[6], m[10], 0.f, m[3], m[7], m[11], 0.f }; v_float32 m0 = vx_lut_quads(_m , idx + VTraits::vlanes()/4); v_float32 m1 = vx_lut_quads(_m + 4, idx + VTraits::vlanes()/4); v_float32 m2 = vx_lut_quads(_m + 8, idx + VTraits::vlanes()/4); v_float32 m3 = vx_lut_quads(_m + 12, idx + VTraits::vlanes()/4); for( ; x <= len*3 - VTraits::vlanes(); x += 3*VTraits::vlanes()/4 ) v_store(dst + x, v_pack_triplets(v_matmuladd(vx_lut_quads(src + x, idx), m0, m1, m2, m3))); for( ; x < len*3; x += 3 ) { float v0 = src[x], v1 = src[x+1], v2 = src[x+2]; float t0 = saturate_cast(m[0]*v0 + m[1]*v1 + m[ 2]*v2 + m[ 3]); float t1 = saturate_cast(m[4]*v0 + m[5]*v1 + m[ 6]*v2 + m[ 7]); float t2 = saturate_cast(m[8]*v0 + m[9]*v1 + m[10]*v2 + m[11]); dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; } vx_cleanup(); return; } if( scn == 4 && dcn == 4 ) { #if CV_SIMD_WIDTH > 16 int idx[VTraits::max_nlanes/4]; for( int i = 0; i < VTraits::vlanes()/4; i++ ) idx[i] = 0; float _m[] = { m[4], m[9], m[14], m[19] }; v_float32 m0 = vx_lut_quads(m , idx); v_float32 m1 = vx_lut_quads(m+ 5, idx); v_float32 m2 = vx_lut_quads(m+10, idx); v_float32 m3 = vx_lut_quads(m+15, idx); v_float32 m4 = vx_lut_quads(_m, idx); for( ; x <= len*4 - VTraits::vlanes(); x += VTraits::vlanes() ) { v_float32 v_src = vx_load(src + x); v_store(dst + x, v_add(v_reduce_sum4(v_mul(v_src, m0), v_mul(v_src, m1), v_mul(v_src, m2), v_mul(v_src, m3)), m4)); } #endif #if CV_SIMD128 v_float32x4 _m0 = v_load(m ); v_float32x4 _m1 = v_load(m + 5); v_float32x4 _m2 = v_load(m + 10); v_float32x4 _m3 = v_load(m + 15); v_float32x4 _m4(m[4], m[9], m[14], m[19]); for( ; x < len*4; x += VTraits::vlanes() ) { v_float32x4 v_src = v_load(src + x); v_store(dst + x, v_add(v_reduce_sum4(v_mul(v_src, _m0), v_mul(v_src, _m1), v_mul(v_src, _m2), v_mul(v_src, _m3)), _m4)); } #else // CV_SIMD_WIDTH >= 16 && !CV_SIMD128 for( ; x < len*4; x += 4 ) { float v0 = src[x], v1 = src[x+1], v2 = src[x+2], v3 = src[x+3]; float t0 = saturate_cast(m[0]*v0 + m[1]*v1 + m[ 2]*v2 + m[ 3]*v3 + m[ 4]); float t1 = saturate_cast(m[5]*v0 + m[6]*v1 + m[ 7]*v2 + m[ 8]*v3 + m[ 9]); float t2 = saturate_cast(m[10]*v0 + m[11]*v1 + m[12]*v2 + m[13]*v3 + m[14]); float t3 = saturate_cast(m[15]*v0 + m[16]*v1 + m[17]*v2 + m[18]*v3 + m[19]); dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; dst[x+3] = t3; } #endif vx_cleanup(); return; } #endif transform_(src, dst, m, len, scn, dcn); } static void transform_8s(const schar* src, schar* dst, const float* m, int len, int scn, int dcn) { transform_(src, dst, m, len, scn, dcn); } static void transform_16s(const short* src, short* dst, const float* m, int len, int scn, int dcn) { transform_(src, dst, m, len, scn, dcn); } static void transform_32s(const int* src, int* dst, const double* m, int len, int scn, int dcn) { transform_(src, dst, m, len, scn, dcn); } static void transform_64f(const double* src, double* dst, const double* m, int len, int scn, int dcn) { transform_(src, dst, m, len, scn, dcn); } template static void diagtransform_( const T* src, T* dst, const WT* m, int len, int cn, int ) { int x; if( cn == 2 ) { for( x = 0; x < len*2; x += 2 ) { T t0 = saturate_cast(m[0]*src[x] + m[2]); T t1 = saturate_cast(m[4]*src[x+1] + m[5]); dst[x] = t0; dst[x+1] = t1; } } else if( cn == 3 ) { for( x = 0; x < len*3; x += 3 ) { T t0 = saturate_cast(m[0]*src[x] + m[3]); T t1 = saturate_cast(m[5]*src[x+1] + m[7]); T t2 = saturate_cast(m[10]*src[x+2] + m[11]); dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; } } else if( cn == 4 ) { for( x = 0; x < len*4; x += 4 ) { T t0 = saturate_cast(m[0]*src[x] + m[4]); T t1 = saturate_cast(m[6]*src[x+1] + m[9]); dst[x] = t0; dst[x+1] = t1; t0 = saturate_cast(m[12]*src[x+2] + m[14]); t1 = saturate_cast(m[18]*src[x+3] + m[19]); dst[x+2] = t0; dst[x+3] = t1; } } else { for( x = 0; x < len; x++, src += cn, dst += cn ) { const WT* _m = m; for( int j = 0; j < cn; j++, _m += cn + 1 ) dst[j] = saturate_cast(src[j]*_m[j] + _m[cn]); } } } static void diagtransform_8u(const uchar* src, uchar* dst, const float* m, int len, int scn, int dcn) { diagtransform_(src, dst, m, len, scn, dcn); } static void diagtransform_8s(const schar* src, schar* dst, const float* m, int len, int scn, int dcn) { diagtransform_(src, dst, m, len, scn, dcn); } static void diagtransform_16u(const ushort* src, ushort* dst, const float* m, int len, int scn, int dcn) { diagtransform_(src, dst, m, len, scn, dcn); } static void diagtransform_16s(const short* src, short* dst, const float* m, int len, int scn, int dcn) { diagtransform_(src, dst, m, len, scn, dcn); } static void diagtransform_32s(const int* src, int* dst, const double* m, int len, int scn, int dcn) { diagtransform_(src, dst, m, len, scn, dcn); } static void diagtransform_32f(const float* src, float* dst, const float* m, int len, int scn, int dcn) { diagtransform_(src, dst, m, len, scn, dcn); } static void diagtransform_64f(const double* src, double* dst, const double* m, int len, int scn, int dcn) { diagtransform_(src, dst, m, len, scn, dcn); } TransformFunc getTransformFunc(int depth) { static TransformFunc transformTab[CV_DEPTH_MAX] = { (TransformFunc)transform_8u, (TransformFunc)transform_8s, (TransformFunc)transform_16u, (TransformFunc)transform_16s, (TransformFunc)transform_32s, (TransformFunc)transform_32f, (TransformFunc)transform_64f, 0 }; return transformTab[depth]; } TransformFunc getDiagTransformFunc(int depth) { static TransformFunc diagTransformTab[CV_DEPTH_MAX] = { (TransformFunc)diagtransform_8u, (TransformFunc)diagtransform_8s, (TransformFunc)diagtransform_16u, (TransformFunc)diagtransform_16s, (TransformFunc)diagtransform_32s, (TransformFunc)diagtransform_32f, (TransformFunc)diagtransform_64f, 0 }; return diagTransformTab[depth]; } /****************************************************************************************\ * Perspective Transform * \****************************************************************************************/ template static void perspectiveTransform_( const T* src, T* dst, const double* m, int len, int scn, int dcn ) { const double eps = FLT_EPSILON; int i; if( scn == 2 && dcn == 2 ) { for( i = 0; i < len*2; i += 2 ) { T x = src[i], y = src[i + 1]; double w = x*m[6] + y*m[7] + m[8]; if( fabs(w) > eps ) { w = 1./w; dst[i] = (T)((x*m[0] + y*m[1] + m[2])*w); dst[i+1] = (T)((x*m[3] + y*m[4] + m[5])*w); } else dst[i] = dst[i+1] = (T)0; } } else if( scn == 3 && dcn == 3 ) { for( i = 0; i < len*3; i += 3 ) { T x = src[i], y = src[i + 1], z = src[i + 2]; double w = x*m[12] + y*m[13] + z*m[14] + m[15]; if( fabs(w) > eps ) { w = 1./w; dst[i] = (T)((x*m[0] + y*m[1] + z*m[2] + m[3]) * w); dst[i+1] = (T)((x*m[4] + y*m[5] + z*m[6] + m[7]) * w); dst[i+2] = (T)((x*m[8] + y*m[9] + z*m[10] + m[11]) * w); } else dst[i] = dst[i+1] = dst[i+2] = (T)0; } } else if( scn == 3 && dcn == 2 ) { for( i = 0; i < len; i++, src += 3, dst += 2 ) { T x = src[0], y = src[1], z = src[2]; double w = x*m[8] + y*m[9] + z*m[10] + m[11]; if( fabs(w) > eps ) { w = 1./w; dst[0] = (T)((x*m[0] + y*m[1] + z*m[2] + m[3])*w); dst[1] = (T)((x*m[4] + y*m[5] + z*m[6] + m[7])*w); } else dst[0] = dst[1] = (T)0; } } else { for( i = 0; i < len; i++, src += scn, dst += dcn ) { const double* _m = m + dcn*(scn + 1); double w = _m[scn]; int j, k; for( k = 0; k < scn; k++ ) w += _m[k]*src[k]; if( fabs(w) > eps ) { _m = m; for( j = 0; j < dcn; j++, _m += scn + 1 ) { double s = _m[scn]; for( k = 0; k < scn; k++ ) s += _m[k]*src[k]; dst[j] = (T)(s*w); } } else for( j = 0; j < dcn; j++ ) dst[j] = 0; } } } static void perspectiveTransform_32f(const float* src, float* dst, const double* m, int len, int scn, int dcn) { perspectiveTransform_(src, dst, m, len, scn, dcn); } static void perspectiveTransform_64f(const double* src, double* dst, const double* m, int len, int scn, int dcn) { perspectiveTransform_(src, dst, m, len, scn, dcn); } TransformFunc getPerspectiveTransform(int depth) { if (depth == CV_32F) return (TransformFunc)perspectiveTransform_32f; if (depth == CV_64F) return (TransformFunc)perspectiveTransform_64f; CV_Assert(0 && "Not supported"); } /****************************************************************************************\ * ScaleAdd * \****************************************************************************************/ static void scaleAdd_32f(const float* src1, const float* src2, float* dst, int len, float* _alpha) { float alpha = *_alpha; int i = 0; #if (CV_SIMD || CV_SIMD_SCALABLE) v_float32 v_alpha = vx_setall_f32(alpha); const int cWidth = VTraits::vlanes(); for (; i <= len - cWidth; i += cWidth) v_store(dst + i, v_muladd(vx_load(src1 + i), v_alpha, vx_load(src2 + i))); vx_cleanup(); #endif for (; i < len; i++) dst[i] = src1[i] * alpha + src2[i]; } static void scaleAdd_64f(const double* src1, const double* src2, double* dst, int len, double* _alpha) { double alpha = *_alpha; int i = 0; #if (CV_SIMD_64F || CV_SIMD_SCALABLE_64F) v_float64 a2 = vx_setall_f64(alpha); const int cWidth = VTraits::vlanes(); for (; i <= len - cWidth; i += cWidth) v_store(dst + i, v_muladd(vx_load(src1 + i), a2, vx_load(src2 + i))); vx_cleanup(); #endif for (; i < len; i++) dst[i] = src1[i] * alpha + src2[i]; } ScaleAddFunc getScaleAddFunc(int depth) { if (depth == CV_32F) return (ScaleAddFunc)scaleAdd_32f; if (depth == CV_64F) return (ScaleAddFunc)scaleAdd_64f; CV_Assert(0 && "Not supported"); } /****************************************************************************************\ * Mahalanobis * \****************************************************************************************/ template static inline double MahalanobisImpl(const Mat& v1, const Mat& v2, const Mat& icovar, double *diff_buffer /*[len]*/, int len /*=v1.total()*/) { CV_INSTRUMENT_REGION(); Size sz = v1.size(); double result = 0; sz.width *= v1.channels(); if (v1.isContinuous() && v2.isContinuous()) { sz.width *= sz.height; sz.height = 1; } { const T* src1 = v1.ptr(); const T* src2 = v2.ptr(); size_t step1 = v1.step/sizeof(src1[0]); size_t step2 = v2.step/sizeof(src2[0]); double* diff = diff_buffer; const T* mat = icovar.ptr(); size_t matstep = icovar.step/sizeof(mat[0]); for (; sz.height--; src1 += step1, src2 += step2, diff += sz.width) { for (int i = 0; i < sz.width; i++) diff[i] = src1[i] - src2[i]; } diff = diff_buffer; for (int i = 0; i < len; i++, mat += matstep) { double row_sum = 0; int j = 0; #if CV_ENABLE_UNROLLED for(; j <= len - 4; j += 4 ) row_sum += diff[j]*mat[j] + diff[j+1]*mat[j+1] + diff[j+2]*mat[j+2] + diff[j+3]*mat[j+3]; #endif for (; j < len; j++) row_sum += diff[j]*mat[j]; result += row_sum * diff[i]; } } return result; } MahalanobisImplFunc getMahalanobisImplFunc(int depth) { if (depth == CV_32F) return (MahalanobisImplFunc)MahalanobisImpl; if (depth == CV_64F) return (MahalanobisImplFunc)MahalanobisImpl; CV_Assert(0 && "Not supported"); } #if !defined(CV_MULTRANSPOSED_BASELINE_ONLY) || defined(CV_CPU_BASELINE_MODE) /****************************************************************************************\ * MulTransposed * \****************************************************************************************/ template static void MulTransposedR(const Mat& srcmat, const Mat& dstmat, const Mat& deltamat, double scale) { int i, j, k; const sT* src = srcmat.ptr(); dT* dst = (dT*)dstmat.ptr
(); const dT* delta = deltamat.ptr
(); size_t srcstep = srcmat.step/sizeof(src[0]); size_t dststep = dstmat.step/sizeof(dst[0]); size_t deltastep = deltamat.rows > 1 ? deltamat.step/sizeof(delta[0]) : 0; int delta_cols = deltamat.cols; Size size = srcmat.size(); dT* tdst = dst; dT* col_buf = 0; dT* delta_buf = 0; int buf_size = size.height*sizeof(dT); AutoBuffer buf; if( delta && delta_cols < size.width ) { CV_Assert( delta_cols == 1 ); buf_size *= 5; } buf.allocate(buf_size); col_buf = (dT*)buf.data(); if( delta && delta_cols < size.width ) { delta_buf = col_buf + size.height; for( i = 0; i < size.height; i++ ) delta_buf[i*4] = delta_buf[i*4+1] = delta_buf[i*4+2] = delta_buf[i*4+3] = delta[i*deltastep]; delta = delta_buf; deltastep = deltastep ? 4 : 0; } #if CV_SIMD128_64F v_float64x2 v_scale = v_setall_f64(scale); #endif if( !delta ) for( i = 0; i < size.width; i++, tdst += dststep ) { for( k = 0; k < size.height; k++ ) col_buf[k] = src[k*srcstep+i]; for( j = i; j <= size.width - 4; j += 4 ) { #if CV_SIMD128_64F if (DataType::depth == CV_64F && DataType
::depth == CV_64F) { v_float64x2 s0 = v_setzero_f64(), s1 = v_setzero_f64(); const double *tsrc = (double*)(src + j); for( k = 0; k < size.height; k++, tsrc += srcstep ) { v_float64x2 a = v_setall_f64((double)col_buf[k]); s0 = v_add(s0, v_mul(a, v_load(tsrc + 0))); s1 = v_add(s1, v_mul(a, v_load(tsrc + 2))); } v_store((double*)(tdst+j), v_mul(s0, v_scale)); v_store((double*)(tdst+j+2), v_mul(s1, v_scale)); } else #endif { double s0 = 0, s1 = 0, s2 = 0, s3 = 0; const sT *tsrc = src + j; for( k = 0; k < size.height; k++, tsrc += srcstep ) { double a = col_buf[k]; s0 += a * tsrc[0]; s1 += a * tsrc[1]; s2 += a * tsrc[2]; s3 += a * tsrc[3]; } tdst[j] = (dT)(s0*scale); tdst[j+1] = (dT)(s1*scale); tdst[j+2] = (dT)(s2*scale); tdst[j+3] = (dT)(s3*scale); } } for( ; j < size.width; j++ ) { double s0 = 0; const sT *tsrc = src + j; for( k = 0; k < size.height; k++, tsrc += srcstep ) s0 += (double)col_buf[k] * tsrc[0]; tdst[j] = (dT)(s0*scale); } } else for( i = 0; i < size.width; i++, tdst += dststep ) { if( !delta_buf ) for( k = 0; k < size.height; k++ ) col_buf[k] = src[k*srcstep+i] - delta[k*deltastep+i]; else for( k = 0; k < size.height; k++ ) col_buf[k] = src[k*srcstep+i] - delta_buf[k*deltastep]; for( j = i; j <= size.width - 4; j += 4 ) { #if CV_SIMD128_64F if (DataType::depth == CV_64F && DataType
::depth == CV_64F) { v_float64x2 s0 = v_setzero_f64(), s1 = v_setzero_f64(); const double *tsrc = (double*)(src + j); const double *d = (double*)(delta_buf ? delta_buf : delta + j); for( k = 0; k < size.height; k++, tsrc+=srcstep, d+=deltastep ) { v_float64x2 a = v_setall_f64((double)col_buf[k]); s0 = v_add(s0, v_mul(a, v_sub(v_load(tsrc + 0), v_load(d + 0)))); s1 = v_add(s1, v_mul(a, v_sub(v_load(tsrc + 2), v_load(d + 2)))); } v_store((double*)(tdst+j), v_mul(s0, v_scale)); v_store((double*)(tdst+j+2), v_mul(s1, v_scale)); } else #endif { double s0 = 0, s1 = 0, s2 = 0, s3 = 0; const sT *tsrc = src + j; const dT *d = delta_buf ? delta_buf : delta + j; for( k = 0; k < size.height; k++, tsrc+=srcstep, d+=deltastep ) { double a = col_buf[k]; s0 += a * (tsrc[0] - d[0]); s1 += a * (tsrc[1] - d[1]); s2 += a * (tsrc[2] - d[2]); s3 += a * (tsrc[3] - d[3]); } tdst[j] = (dT)(s0*scale); tdst[j+1] = (dT)(s1*scale); tdst[j+2] = (dT)(s2*scale); tdst[j+3] = (dT)(s3*scale); } } for( ; j < size.width; j++ ) { double s0 = 0; const sT *tsrc = src + j; const dT *d = delta_buf ? delta_buf : delta + j; for( k = 0; k < size.height; k++, tsrc+=srcstep, d+=deltastep ) s0 += (double)col_buf[k] * (tsrc[0] - d[0]); tdst[j] = (dT)(s0*scale); } } } template static void MulTransposedL(const Mat& srcmat, const Mat& dstmat, const Mat& deltamat, double scale) { int i, j, k; const sT* src = srcmat.ptr(); dT* dst = (dT*)dstmat.ptr
(); const dT* delta = deltamat.ptr
(); size_t srcstep = srcmat.step/sizeof(src[0]); size_t dststep = dstmat.step/sizeof(dst[0]); size_t deltastep = deltamat.rows > 1 ? deltamat.step/sizeof(delta[0]) : 0; int delta_cols = deltamat.cols; Size size = srcmat.size(); dT* tdst = dst; if( !delta ) for( i = 0; i < size.height; i++, tdst += dststep ) for( j = i; j < size.height; j++ ) { double s = 0; const sT *tsrc1 = src + i*srcstep; const sT *tsrc2 = src + j*srcstep; #if CV_SIMD128_64F if (DataType::depth == CV_64F && DataType
::depth == CV_64F) { const double *v_tsrc1 = (double *)(tsrc1); const double *v_tsrc2 = (double *)(tsrc2); v_float64x2 v_s = v_setzero_f64(); for( k = 0; k <= size.width - 4; k += 4 ) v_s = v_add(v_s, v_add(v_mul(v_load(v_tsrc1 + k), v_load(v_tsrc2 + k)), v_mul(v_load(v_tsrc1 + k + 2), v_load(v_tsrc2 + k + 2)))); s += v_reduce_sum(v_s); } else #endif { for( k = 0; k <= size.width - 4; k += 4 ) s += (double)tsrc1[k]*tsrc2[k] + (double)tsrc1[k+1]*tsrc2[k+1] + (double)tsrc1[k+2]*tsrc2[k+2] + (double)tsrc1[k+3]*tsrc2[k+3]; } for( ; k < size.width; k++ ) s += (double)tsrc1[k] * tsrc2[k]; tdst[j] = (dT)(s*scale); } else { dT delta_buf[4]; int delta_shift = delta_cols == size.width ? 4 : 0; AutoBuffer buf(size.width*sizeof(dT)); dT* row_buf = (dT*)buf.data(); for( i = 0; i < size.height; i++, tdst += dststep ) { const sT *tsrc1 = src + i*srcstep; const dT *tdelta1 = delta + i*deltastep; if( delta_cols < size.width ) for( k = 0; k < size.width; k++ ) row_buf[k] = tsrc1[k] - tdelta1[0]; else for( k = 0; k < size.width; k++ ) row_buf[k] = tsrc1[k] - tdelta1[k]; for( j = i; j < size.height; j++ ) { double s = 0; const sT *tsrc2 = src + j*srcstep; const dT *tdelta2 = delta + j*deltastep; if( delta_cols < size.width ) { delta_buf[0] = delta_buf[1] = delta_buf[2] = delta_buf[3] = tdelta2[0]; tdelta2 = delta_buf; } #if CV_SIMD128_64F if (DataType::depth == CV_64F && DataType
::depth == CV_64F) { const double *v_tsrc2 = (double *)(tsrc2); const double *v_tdelta2 = (double *)(tdelta2); const double *v_row_buf = (double *)(row_buf); v_float64x2 v_s = v_setzero_f64(); for( k = 0; k <= size.width - 4; k += 4, v_tdelta2 += delta_shift ) v_s = v_add(v_s, v_add(v_mul(v_sub(v_load(v_tsrc2 + k), v_load(v_tdelta2)), v_load(v_row_buf + k)), v_mul(v_sub(v_load(v_tsrc2 + k + 2), v_load(v_tdelta2 + 2)), v_load(v_row_buf + k + 2)))); s += v_reduce_sum(v_s); tdelta2 = (const dT *)(v_tdelta2); } else #endif { for( k = 0; k <= size.width-4; k += 4, tdelta2 += delta_shift ) s += (double)row_buf[k]*(tsrc2[k] - tdelta2[0]) + (double)row_buf[k+1]*(tsrc2[k+1] - tdelta2[1]) + (double)row_buf[k+2]*(tsrc2[k+2] - tdelta2[2]) + (double)row_buf[k+3]*(tsrc2[k+3] - tdelta2[3]); } for( ; k < size.width; k++, tdelta2++ ) s += (double)row_buf[k]*(tsrc2[k] - tdelta2[0]); tdst[j] = (dT)(s*scale); } } } } MulTransposedFunc getMulTransposedFunc(int stype, int dtype, bool ata) { MulTransposedFunc func = NULL; if (stype == CV_8U && dtype == CV_32F) { func = ata ? MulTransposedR : MulTransposedL; } else if (stype == CV_8U && dtype == CV_64F) { func = ata ? MulTransposedR : MulTransposedL; } else if(stype == CV_16U && dtype == CV_32F) { func = ata ? MulTransposedR : MulTransposedL; } else if(stype == CV_16U && dtype == CV_64F) { func = ata ? MulTransposedR : MulTransposedL; } else if(stype == CV_16S && dtype == CV_32F) { func = ata ? MulTransposedR : MulTransposedL; } else if(stype == CV_16S && dtype == CV_64F) { func = ata ? MulTransposedR : MulTransposedL; } else if(stype == CV_32F && dtype == CV_32F) { func = ata ? MulTransposedR : MulTransposedL; } else if(stype == CV_32F && dtype == CV_64F) { func = ata ? MulTransposedR : MulTransposedL; } else if(stype == CV_64F && dtype == CV_64F) { func = ata ? MulTransposedR : MulTransposedL; } CV_Assert(func && "Not supported"); return func; } #endif // !defined(CV_MULTRANSPOSED_BASELINE_ONLY) || defined(CV_CPU_BASELINE_MODE) /****************************************************************************************\ * Dot Product * \****************************************************************************************/ template static inline double dotProd_(const T* src1, const T* src2, int len) { int i = 0; double result = 0; #if CV_ENABLE_UNROLLED for( ; i <= len - 4; i += 4 ) result += (double)src1[i]*src2[i] + (double)src1[i+1]*src2[i+1] + (double)src1[i+2]*src2[i+2] + (double)src1[i+3]*src2[i+3]; #endif for( ; i < len; i++ ) result += (double)src1[i]*src2[i]; return result; } double dotProd_8u(const uchar* src1, const uchar* src2, int len) { double r = 0; int i = 0; #if (CV_SIMD || CV_SIMD_SCALABLE) int len0 = len & -VTraits::vlanes(), blockSize0 = (1 << 15), blockSize; while (i < len0) { blockSize = std::min(len0 - i, blockSize0); v_uint32 v_sum = vx_setzero_u32(); const int cWidth = VTraits::vlanes(); int j = 0; for (; j <= blockSize - cWidth * 2; j += cWidth * 2) { v_uint8 v_src1 = vx_load(src1 + j); v_uint8 v_src2 = vx_load(src2 + j); v_sum = v_dotprod_expand_fast(v_src1, v_src2, v_sum); } for (; j <= blockSize - cWidth; j += cWidth) { v_int16 v_src10 = v_reinterpret_as_s16(vx_load_expand(src1 + j)); v_int16 v_src20 = v_reinterpret_as_s16(vx_load_expand(src2 + j)); v_sum = v_add(v_sum, v_reinterpret_as_u32(v_dotprod_fast(v_src10, v_src20))); } r += (double)v_reduce_sum(v_sum); src1 += blockSize; src2 += blockSize; i += blockSize; } vx_cleanup(); #endif return r + dotProd_(src1, src2, len - i); } double dotProd_8s(const schar* src1, const schar* src2, int len) { double r = 0.0; int i = 0; #if (CV_SIMD || CV_SIMD_SCALABLE) int len0 = len & -VTraits::vlanes(), blockSize0 = (1 << 14), blockSize; while (i < len0) { blockSize = std::min(len0 - i, blockSize0); v_int32 v_sum = vx_setzero_s32(); const int cWidth = VTraits::vlanes(); int j = 0; for (; j <= blockSize - cWidth * 2; j += cWidth * 2) { v_int8 v_src1 = vx_load(src1 + j); v_int8 v_src2 = vx_load(src2 + j); v_sum = v_dotprod_expand_fast(v_src1, v_src2, v_sum); } for (; j <= blockSize - cWidth; j += cWidth) { v_int16 v_src1 = vx_load_expand(src1 + j); v_int16 v_src2 = vx_load_expand(src2 + j); v_sum = v_dotprod_fast(v_src1, v_src2, v_sum); } r += (double)v_reduce_sum(v_sum); src1 += blockSize; src2 += blockSize; i += blockSize; } vx_cleanup(); #endif return r + dotProd_(src1, src2, len - i); } double dotProd_16u(const ushort* src1, const ushort* src2, int len) { double r = 0.0; int i = 0; #if (CV_SIMD || CV_SIMD_SCALABLE) int len0 = len & -VTraits::vlanes(), blockSize0 = (1 << 24), blockSize; while (i < len0) { blockSize = std::min(len0 - i, blockSize0); v_uint64 v_sum = vx_setzero_u64(); const int cWidth = VTraits::vlanes(); int j = 0; for (; j <= blockSize - cWidth; j += cWidth) { v_uint16 v_src1 = vx_load(src1 + j); v_uint16 v_src2 = vx_load(src2 + j); v_sum = v_dotprod_expand_fast(v_src1, v_src2, v_sum); } r += (double)v_reduce_sum(v_sum); src1 += blockSize; src2 += blockSize; i += blockSize; } vx_cleanup(); #endif return r + dotProd_(src1, src2, len - i); } double dotProd_16s(const short* src1, const short* src2, int len) { double r = 0.0; int i = 0; #if (CV_SIMD || CV_SIMD_SCALABLE) int len0 = len & -VTraits::vlanes(), blockSize0 = (1 << 24), blockSize; while (i < len0) { blockSize = std::min(len0 - i, blockSize0); v_int64 v_sum = vx_setzero_s64(); const int cWidth = VTraits::vlanes(); int j = 0; for (; j <= blockSize - cWidth; j += cWidth) { v_int16 v_src1 = vx_load(src1 + j); v_int16 v_src2 = vx_load(src2 + j); v_sum = v_dotprod_expand_fast(v_src1, v_src2, v_sum); } r += (double)v_reduce_sum(v_sum); src1 += blockSize; src2 += blockSize; i += blockSize; } vx_cleanup(); #endif return r + dotProd_(src1, src2, len - i); } double dotProd_32s(const int* src1, const int* src2, int len) { #if CV_SIMD_64F // TODO: enable for CV_SIMD_SCALABLE_64F // Test failed on RVV(QEMU): Too big difference (=1.20209e-08 > 1.11022e-12) double r = .0; int i = 0; const int step = VTraits::vlanes(); v_float64 v_sum0 = vx_setzero_f64(); #if CV_SIMD_WIDTH == 16 const int wstep = step * 2; v_float64 v_sum1 = vx_setzero_f64(); for (; i < len - wstep; i += wstep, src1 += wstep, src2 += wstep) { v_int32 v_src10 = vx_load(src1); v_int32 v_src20 = vx_load(src2); v_int32 v_src11 = vx_load(src1 + step); v_int32 v_src21 = vx_load(src2 + step); v_sum0 = v_dotprod_expand_fast(v_src10, v_src20, v_sum0); v_sum1 = v_dotprod_expand_fast(v_src11, v_src21, v_sum1); } v_sum0 = v_add(v_sum0, v_sum1); #endif for (; i < len - step; i += step, src1 += step, src2 += step) { v_int32 v_src1 = vx_load(src1); v_int32 v_src2 = vx_load(src2); v_sum0 = v_dotprod_expand_fast(v_src1, v_src2, v_sum0); } r = v_reduce_sum(v_sum0); vx_cleanup(); return r + dotProd_(src1, src2, len - i); #else return dotProd_(src1, src2, len); #endif } double dotProd_32f(const float* src1, const float* src2, int len) { double r = 0.0; int i = 0; #if (CV_SIMD || CV_SIMD_SCALABLE) int len0 = len & -VTraits::vlanes(), blockSize0 = (1 << 13), blockSize; while (i < len0) { blockSize = std::min(len0 - i, blockSize0); v_float32 v_sum = vx_setzero_f32(); int j = 0; int cWidth = VTraits::vlanes(); #if CV_ENABLE_UNROLLED v_float32 v_sum1 = vx_setzero_f32(); v_float32 v_sum2 = vx_setzero_f32(); v_float32 v_sum3 = vx_setzero_f32(); for (; j <= blockSize - (cWidth * 4); j += (cWidth * 4)) { v_sum = v_muladd(vx_load(src1 + j), vx_load(src2 + j), v_sum); v_sum1 = v_muladd(vx_load(src1 + j + cWidth), vx_load(src2 + j + cWidth), v_sum1); v_sum2 = v_muladd(vx_load(src1 + j + (cWidth * 2)), vx_load(src2 + j + (cWidth * 2)), v_sum2); v_sum3 = v_muladd(vx_load(src1 + j + (cWidth * 3)), vx_load(src2 + j + (cWidth * 3)), v_sum3); } v_sum = v_add(v_sum, v_add(v_add(v_sum1, v_sum2), v_sum3)); #endif for (; j <= blockSize - cWidth; j += cWidth) v_sum = v_muladd(vx_load(src1 + j), vx_load(src2 + j), v_sum); r += v_reduce_sum(v_sum); src1 += blockSize; src2 += blockSize; i += blockSize; } vx_cleanup(); #endif return r + dotProd_(src1, src2, len - i); } double dotProd_64f(const double* src1, const double* src2, int len) { return dotProd_(src1, src2, len); } #endif CV_CPU_OPTIMIZATION_NAMESPACE_END } // namespace