#!/usr/bin/python ''' This example illustrates how to use Hough Transform to find lines Usage: houghlines.py [] image argument defaults to ../data/pic1.png ''' # Python 2/3 compatibility from __future__ import print_function import cv2 import numpy as np import sys import math if __name__ == '__main__': print(__doc__) try: fn = sys.argv[1] except IndexError: fn = "../data/pic1.png" src = cv2.imread(fn) dst = cv2.Canny(src, 50, 200) cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR) if True: # HoughLinesP lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10) a,b,c = lines.shape for i in range(a): cv2.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv2.LINE_AA) else: # HoughLines lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0) a,b,c = lines.shape for i in range(a): rho = lines[i][0][0] theta = lines[i][0][1] a = math.cos(theta) b = math.sin(theta) x0, y0 = a*rho, b*rho pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) ) pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) ) cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA) cv2.imshow("source", src) cv2.imshow("detected lines", cdst) cv2.waitKey(0)