/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_PRECOMP_H__ #define __OPENCV_PRECOMP_H__ #include "opencv2/opencv_modules.hpp" #include "cvconfig.h" #include "opencv2/core/utility.hpp" #include "opencv2/core/core_c.h" #include "opencv2/core/cuda.hpp" #include "opencv2/core/opengl.hpp" #include "opencv2/core/va_intel.hpp" #include "opencv2/core/private.hpp" #include "opencv2/core/private.cuda.hpp" #ifdef HAVE_OPENCL #include "opencv2/core/ocl.hpp" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USE_SSE2 (cv::checkHardwareSupport(CV_CPU_SSE2)) #define USE_SSE4_2 (cv::checkHardwareSupport(CV_CPU_SSE4_2)) #define USE_AVX (cv::checkHardwareSupport(CV_CPU_AVX)) #define USE_AVX2 (cv::checkHardwareSupport(CV_CPU_AVX2)) #include "opencv2/core/hal/hal.hpp" #include "opencv2/core/hal/intrin.hpp" #include "opencv2/core/sse_utils.hpp" #include "opencv2/core/neon_utils.hpp" #include "opencv2/core/vsx_utils.hpp" #include "arithm_core.hpp" #include "hal_replacement.hpp" #ifdef HAVE_TEGRA_OPTIMIZATION #include "opencv2/core/core_tegra.hpp" #else #define GET_OPTIMIZED(func) (func) #endif namespace cv { // -128.f ... 255.f extern const float g_8x32fTab[]; #define CV_8TO32F(x) cv::g_8x32fTab[(x)+128] extern const ushort g_8x16uSqrTab[]; #define CV_SQR_8U(x) cv::g_8x16uSqrTab[(x)+255] extern const uchar g_Saturate8u[]; #define CV_FAST_CAST_8U(t) (assert(-256 <= (t) && (t) <= 512), cv::g_Saturate8u[(t)+256]) #define CV_MIN_8U(a,b) ((a) - CV_FAST_CAST_8U((a) - (b))) #define CV_MAX_8U(a,b) ((a) + CV_FAST_CAST_8U((b) - (a))) template<> inline uchar OpAdd::operator ()(uchar a, uchar b) const { return CV_FAST_CAST_8U(a + b); } template<> inline uchar OpSub::operator ()(uchar a, uchar b) const { return CV_FAST_CAST_8U(a - b); } template<> inline short OpAbsDiff::operator ()(short a, short b) const { return saturate_cast(std::abs(a - b)); } template<> inline schar OpAbsDiff::operator ()(schar a, schar b) const { return saturate_cast(std::abs(a - b)); } template<> inline uchar OpMin::operator ()(uchar a, uchar b) const { return CV_MIN_8U(a, b); } template<> inline uchar OpMax::operator ()(uchar a, uchar b) const { return CV_MAX_8U(a, b); } typedef void (*UnaryFunc)(const uchar* src1, size_t step1, uchar* dst, size_t step, Size sz, void*); typedef void (*BinaryFunc)(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void*); typedef void (*BinaryFuncC)(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void*); BinaryFunc getConvertFunc(int sdepth, int ddepth); BinaryFunc getConvertScaleFunc(int sdepth, int ddepth); BinaryFunc getCopyMaskFunc(size_t esz); /* default memory block for sparse array elements */ #define CV_SPARSE_MAT_BLOCK (1<<12) /* initial hash table size */ #define CV_SPARSE_HASH_SIZE0 (1<<10) /* maximal average node_count/hash_size ratio beyond which hash table is resized */ #define CV_SPARSE_HASH_RATIO 3 inline Size getContinuousSize_( int flags, int cols, int rows, int widthScale ) { int64 sz = (int64)cols * rows * widthScale; return (flags & Mat::CONTINUOUS_FLAG) != 0 && (int)sz == sz ? Size((int)sz, 1) : Size(cols * widthScale, rows); } inline Size getContinuousSize( const Mat& m1, int widthScale=1 ) { return getContinuousSize_(m1.flags, m1.cols, m1.rows, widthScale); } inline Size getContinuousSize( const Mat& m1, const Mat& m2, int widthScale=1 ) { return getContinuousSize_(m1.flags & m2.flags, m1.cols, m1.rows, widthScale); } inline Size getContinuousSize( const Mat& m1, const Mat& m2, const Mat& m3, int widthScale=1 ) { return getContinuousSize_(m1.flags & m2.flags & m3.flags, m1.cols, m1.rows, widthScale); } inline Size getContinuousSize( const Mat& m1, const Mat& m2, const Mat& m3, const Mat& m4, int widthScale=1 ) { return getContinuousSize_(m1.flags & m2.flags & m3.flags & m4.flags, m1.cols, m1.rows, widthScale); } inline Size getContinuousSize( const Mat& m1, const Mat& m2, const Mat& m3, const Mat& m4, const Mat& m5, int widthScale=1 ) { return getContinuousSize_(m1.flags & m2.flags & m3.flags & m4.flags & m5.flags, m1.cols, m1.rows, widthScale); } void setSize( Mat& m, int _dims, const int* _sz, const size_t* _steps, bool autoSteps=false ); void finalizeHdr(Mat& m); int updateContinuityFlag(int flags, int dims, const int* size, const size_t* step); struct NoVec { size_t operator()(const void*, const void*, void*, size_t) const { return 0; } }; #define CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn) ((INT_MAX/4)/(cn)) // HAL implementation accepts 'int' len, so INT_MAX doesn't work here enum { BLOCK_SIZE = 1024 }; #if defined HAVE_IPP && (IPP_VERSION_X100 >= 700) #define ARITHM_USE_IPP 1 #else #define ARITHM_USE_IPP 0 #endif inline bool checkScalar(const Mat& sc, int atype, int sckind, int akind) { if( sc.dims > 2 || !sc.isContinuous() ) return false; Size sz = sc.size(); if(sz.width != 1 && sz.height != 1) return false; int cn = CV_MAT_CN(atype); if( akind == _InputArray::MATX && sckind != _InputArray::MATX ) return false; return sz == Size(1, 1) || sz == Size(1, cn) || sz == Size(cn, 1) || (sz == Size(1, 4) && sc.type() == CV_64F && cn <= 4); } inline bool checkScalar(InputArray sc, int atype, int sckind, int akind) { if( sc.dims() > 2 || !sc.isContinuous() ) return false; Size sz = sc.size(); if(sz.width != 1 && sz.height != 1) return false; int cn = CV_MAT_CN(atype); if( akind == _InputArray::MATX && sckind != _InputArray::MATX ) return false; return sz == Size(1, 1) || sz == Size(1, cn) || sz == Size(cn, 1) || (sz == Size(1, 4) && sc.type() == CV_64F && cn <= 4); } void convertAndUnrollScalar( const Mat& sc, int buftype, uchar* scbuf, size_t blocksize ); #ifdef CV_COLLECT_IMPL_DATA struct ImplCollector { ImplCollector() { useCollection = false; implFlags = 0; } bool useCollection; // enable/disable impl data collection int implFlags; std::vector implCode; std::vector implFun; cv::Mutex mutex; }; #endif struct CoreTLSData { CoreTLSData() : //#ifdef HAVE_OPENCL device(0), useOpenCL(-1), //#endif useIPP(-1), useIPP_NE(-1) #ifdef HAVE_TEGRA_OPTIMIZATION ,useTegra(-1) #endif #ifdef HAVE_OPENVX ,useOpenVX(-1) #endif {} RNG rng; //#ifdef HAVE_OPENCL int device; // device index of an array of devices in a context, see also Device::getDefault ocl::Queue oclQueue; // the queue used for running a kernel, see also getQueue, Kernel::run int useOpenCL; // 1 - use, 0 - do not use, -1 - auto/not initialized //#endif int useIPP; // 1 - use, 0 - do not use, -1 - auto/not initialized int useIPP_NE; // 1 - use, 0 - do not use, -1 - auto/not initialized #ifdef HAVE_TEGRA_OPTIMIZATION int useTegra; // 1 - use, 0 - do not use, -1 - auto/not initialized #endif #ifdef HAVE_OPENVX int useOpenVX; // 1 - use, 0 - do not use, -1 - auto/not initialized #endif }; TLSData& getCoreTlsData(); #if defined(BUILD_SHARED_LIBS) #if defined _WIN32 || defined WINCE #define CL_RUNTIME_EXPORT __declspec(dllexport) #elif defined __GNUC__ && __GNUC__ >= 4 #define CL_RUNTIME_EXPORT __attribute__ ((visibility ("default"))) #else #define CL_RUNTIME_EXPORT #endif #else #define CL_RUNTIME_EXPORT #endif extern CV_EXPORTS bool __termination; // skip some cleanups, because process is terminating // (for example, if ExitProcess() was already called) cv::Mutex& getInitializationMutex(); // TODO Memory barriers? #define CV_SINGLETON_LAZY_INIT_(TYPE, INITIALIZER, RET_VALUE) \ static TYPE* volatile instance = NULL; \ if (instance == NULL) \ { \ cv::AutoLock lock(cv::getInitializationMutex()); \ if (instance == NULL) \ instance = INITIALIZER; \ } \ return RET_VALUE; #define CV_SINGLETON_LAZY_INIT(TYPE, INITIALIZER) CV_SINGLETON_LAZY_INIT_(TYPE, INITIALIZER, instance) #define CV_SINGLETON_LAZY_INIT_REF(TYPE, INITIALIZER) CV_SINGLETON_LAZY_INIT_(TYPE, INITIALIZER, *instance) int cv_snprintf(char* buf, int len, const char* fmt, ...); int cv_vsnprintf(char* buf, int len, const char* fmt, va_list args); } #endif /*_CXCORE_INTERNAL_H_*/