/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_imgproc.hpp" namespace cv { static void thresh_8u( const Mat& _src, Mat& _dst, uchar thresh, uchar maxval, int type ) { int i, j, j_scalar = 0; uchar tab[256]; Size roi = _src.size(); roi.width *= _src.channels(); size_t src_step = _src.step; size_t dst_step = _dst.step; if( _src.isContinuous() && _dst.isContinuous() ) { roi.width *= roi.height; roi.height = 1; src_step = dst_step = roi.width; } #ifdef HAVE_TEGRA_OPTIMIZATION if (cv::tegra::useTegra() && tegra::thresh_8u(_src, _dst, roi.width, roi.height, thresh, maxval, type)) return; #endif #if defined(HAVE_IPP) CV_IPP_CHECK() { IppiSize sz = { roi.width, roi.height }; CV_SUPPRESS_DEPRECATED_START switch( type ) { case THRESH_TRUNC: #ifndef HAVE_IPP_ICV_ONLY if (_src.data == _dst.data && ippiThreshold_GT_8u_C1IR(_dst.ptr(), (int)dst_step, sz, thresh) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } #endif if (ippiThreshold_GT_8u_C1R(_src.ptr(), (int)src_step, _dst.ptr(), (int)dst_step, sz, thresh) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); break; case THRESH_TOZERO: #ifndef HAVE_IPP_ICV_ONLY if (_src.data == _dst.data && ippiThreshold_LTVal_8u_C1IR(_dst.ptr(), (int)dst_step, sz, thresh+1, 0) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } #endif if (ippiThreshold_LTVal_8u_C1R(_src.ptr(), (int)src_step, _dst.ptr(), (int)dst_step, sz, thresh+1, 0) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); break; case THRESH_TOZERO_INV: #ifndef HAVE_IPP_ICV_ONLY if (_src.data == _dst.data && ippiThreshold_GTVal_8u_C1IR(_dst.ptr(), (int)dst_step, sz, thresh, 0) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } #endif if (ippiThreshold_GTVal_8u_C1R(_src.ptr(), (int)src_step, _dst.ptr(), (int)dst_step, sz, thresh, 0) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); break; } CV_SUPPRESS_DEPRECATED_END } #endif switch( type ) { case THRESH_BINARY: for( i = 0; i <= thresh; i++ ) tab[i] = 0; for( ; i < 256; i++ ) tab[i] = maxval; break; case THRESH_BINARY_INV: for( i = 0; i <= thresh; i++ ) tab[i] = maxval; for( ; i < 256; i++ ) tab[i] = 0; break; case THRESH_TRUNC: for( i = 0; i <= thresh; i++ ) tab[i] = (uchar)i; for( ; i < 256; i++ ) tab[i] = thresh; break; case THRESH_TOZERO: for( i = 0; i <= thresh; i++ ) tab[i] = 0; for( ; i < 256; i++ ) tab[i] = (uchar)i; break; case THRESH_TOZERO_INV: for( i = 0; i <= thresh; i++ ) tab[i] = (uchar)i; for( ; i < 256; i++ ) tab[i] = 0; break; default: CV_Error( CV_StsBadArg, "Unknown threshold type" ); } #if CV_SSE2 if( checkHardwareSupport(CV_CPU_SSE2) ) { __m128i _x80 = _mm_set1_epi8('\x80'); __m128i thresh_u = _mm_set1_epi8(thresh); __m128i thresh_s = _mm_set1_epi8(thresh ^ 0x80); __m128i maxval_ = _mm_set1_epi8(maxval); j_scalar = roi.width & -8; for( i = 0; i < roi.height; i++ ) { const uchar* src = _src.ptr() + src_step*i; uchar* dst = _dst.ptr() + dst_step*i; switch( type ) { case THRESH_BINARY: for( j = 0; j <= roi.width - 32; j += 32 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s ); v1 = _mm_cmpgt_epi8( _mm_xor_si128(v1, _x80), thresh_s ); v0 = _mm_and_si128( v0, maxval_ ); v1 = _mm_and_si128( v1, maxval_ ); _mm_storeu_si128( (__m128i*)(dst + j), v0 ); _mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); } for( ; j <= roi.width - 8; j += 8 ) { __m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s ); v0 = _mm_and_si128( v0, maxval_ ); _mm_storel_epi64( (__m128i*)(dst + j), v0 ); } break; case THRESH_BINARY_INV: for( j = 0; j <= roi.width - 32; j += 32 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s ); v1 = _mm_cmpgt_epi8( _mm_xor_si128(v1, _x80), thresh_s ); v0 = _mm_andnot_si128( v0, maxval_ ); v1 = _mm_andnot_si128( v1, maxval_ ); _mm_storeu_si128( (__m128i*)(dst + j), v0 ); _mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); } for( ; j <= roi.width - 8; j += 8 ) { __m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s ); v0 = _mm_andnot_si128( v0, maxval_ ); _mm_storel_epi64( (__m128i*)(dst + j), v0 ); } break; case THRESH_TRUNC: for( j = 0; j <= roi.width - 32; j += 32 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); v0 = _mm_subs_epu8( v0, _mm_subs_epu8( v0, thresh_u )); v1 = _mm_subs_epu8( v1, _mm_subs_epu8( v1, thresh_u )); _mm_storeu_si128( (__m128i*)(dst + j), v0 ); _mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); } for( ; j <= roi.width - 8; j += 8 ) { __m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); v0 = _mm_subs_epu8( v0, _mm_subs_epu8( v0, thresh_u )); _mm_storel_epi64( (__m128i*)(dst + j), v0 ); } break; case THRESH_TOZERO: for( j = 0; j <= roi.width - 32; j += 32 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); v0 = _mm_and_si128( v0, _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s )); v1 = _mm_and_si128( v1, _mm_cmpgt_epi8(_mm_xor_si128(v1, _x80), thresh_s )); _mm_storeu_si128( (__m128i*)(dst + j), v0 ); _mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); } for( ; j <= roi.width - 8; j += 8 ) { __m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); v0 = _mm_and_si128( v0, _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s )); _mm_storel_epi64( (__m128i*)(dst + j), v0 ); } break; case THRESH_TOZERO_INV: for( j = 0; j <= roi.width - 32; j += 32 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) ); v0 = _mm_andnot_si128( _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s ), v0 ); v1 = _mm_andnot_si128( _mm_cmpgt_epi8(_mm_xor_si128(v1, _x80), thresh_s ), v1 ); _mm_storeu_si128( (__m128i*)(dst + j), v0 ); _mm_storeu_si128( (__m128i*)(dst + j + 16), v1 ); } for( ; j <= roi.width - 8; j += 8 ) { __m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) ); v0 = _mm_andnot_si128( _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s ), v0 ); _mm_storel_epi64( (__m128i*)(dst + j), v0 ); } break; } } } #elif CV_NEON uint8x16_t v_thresh = vdupq_n_u8(thresh), v_maxval = vdupq_n_u8(maxval); switch( type ) { case THRESH_BINARY: for( i = 0; i < roi.height; i++ ) { const uchar* src = _src.ptr() + src_step*i; uchar* dst = _dst.ptr() + dst_step*i; for ( j_scalar = 0; j_scalar <= roi.width - 16; j_scalar += 16) vst1q_u8(dst + j_scalar, vandq_u8(vcgtq_u8(vld1q_u8(src + j_scalar), v_thresh), v_maxval)); } break; case THRESH_BINARY_INV: for( i = 0; i < roi.height; i++ ) { const uchar* src = _src.ptr() + src_step*i; uchar* dst = _dst.ptr() + dst_step*i; for ( j_scalar = 0; j_scalar <= roi.width - 16; j_scalar += 16) vst1q_u8(dst + j_scalar, vandq_u8(vcleq_u8(vld1q_u8(src + j_scalar), v_thresh), v_maxval)); } break; case THRESH_TRUNC: for( i = 0; i < roi.height; i++ ) { const uchar* src = _src.ptr() + src_step*i; uchar* dst = _dst.ptr() + dst_step*i; for ( j_scalar = 0; j_scalar <= roi.width - 16; j_scalar += 16) vst1q_u8(dst + j_scalar, vminq_u8(vld1q_u8(src + j_scalar), v_thresh)); } break; case THRESH_TOZERO: for( i = 0; i < roi.height; i++ ) { const uchar* src = _src.ptr() + src_step*i; uchar* dst = _dst.ptr() + dst_step*i; for ( j_scalar = 0; j_scalar <= roi.width - 16; j_scalar += 16) { uint8x16_t v_src = vld1q_u8(src + j_scalar), v_mask = vcgtq_u8(v_src, v_thresh); vst1q_u8(dst + j_scalar, vandq_u8(v_mask, v_src)); } } break; case THRESH_TOZERO_INV: for( i = 0; i < roi.height; i++ ) { const uchar* src = _src.ptr() + src_step*i; uchar* dst = _dst.ptr() + dst_step*i; for ( j_scalar = 0; j_scalar <= roi.width - 16; j_scalar += 16) { uint8x16_t v_src = vld1q_u8(src + j_scalar), v_mask = vcleq_u8(v_src, v_thresh); vst1q_u8(dst + j_scalar, vandq_u8(v_mask, v_src)); } } break; default: return CV_Error( CV_StsBadArg, "" ); } #endif if( j_scalar < roi.width ) { for( i = 0; i < roi.height; i++ ) { const uchar* src = _src.ptr() + src_step*i; uchar* dst = _dst.ptr() + dst_step*i; j = j_scalar; #if CV_ENABLE_UNROLLED for( ; j <= roi.width - 4; j += 4 ) { uchar t0 = tab[src[j]]; uchar t1 = tab[src[j+1]]; dst[j] = t0; dst[j+1] = t1; t0 = tab[src[j+2]]; t1 = tab[src[j+3]]; dst[j+2] = t0; dst[j+3] = t1; } #endif for( ; j < roi.width; j++ ) dst[j] = tab[src[j]]; } } } static void thresh_16s( const Mat& _src, Mat& _dst, short thresh, short maxval, int type ) { int i, j; Size roi = _src.size(); roi.width *= _src.channels(); const short* src = _src.ptr(); short* dst = _dst.ptr(); size_t src_step = _src.step/sizeof(src[0]); size_t dst_step = _dst.step/sizeof(dst[0]); #if CV_SSE2 volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE); #endif if( _src.isContinuous() && _dst.isContinuous() ) { roi.width *= roi.height; roi.height = 1; src_step = dst_step = roi.width; } #ifdef HAVE_TEGRA_OPTIMIZATION if (cv::tegra::useTegra() && tegra::thresh_16s(_src, _dst, roi.width, roi.height, thresh, maxval, type)) return; #endif #if defined(HAVE_IPP) CV_IPP_CHECK() { IppiSize sz = { roi.width, roi.height }; CV_SUPPRESS_DEPRECATED_START switch( type ) { case THRESH_TRUNC: #ifndef HAVE_IPP_ICV_ONLY if (_src.data == _dst.data && ippiThreshold_GT_16s_C1IR(dst, (int)dst_step*sizeof(dst[0]), sz, thresh) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } #endif if (ippiThreshold_GT_16s_C1R(src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); break; case THRESH_TOZERO: #ifndef HAVE_IPP_ICV_ONLY if (_src.data == _dst.data && ippiThreshold_LTVal_16s_C1IR(dst, (int)dst_step*sizeof(dst[0]), sz, thresh + 1, 0) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } #endif if (ippiThreshold_LTVal_16s_C1R(src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh+1, 0) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); break; case THRESH_TOZERO_INV: #ifndef HAVE_IPP_ICV_ONLY if (_src.data == _dst.data && ippiThreshold_GTVal_16s_C1IR(dst, (int)dst_step*sizeof(dst[0]), sz, thresh, 0) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } #endif if (ippiThreshold_GTVal_16s_C1R(src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh, 0) >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); break; } CV_SUPPRESS_DEPRECATED_END } #endif switch( type ) { case THRESH_BINARY: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128i thresh8 = _mm_set1_epi16(thresh), maxval8 = _mm_set1_epi16(maxval); for( ; j <= roi.width - 16; j += 16 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); v0 = _mm_cmpgt_epi16( v0, thresh8 ); v1 = _mm_cmpgt_epi16( v1, thresh8 ); v0 = _mm_and_si128( v0, maxval8 ); v1 = _mm_and_si128( v1, maxval8 ); _mm_storeu_si128((__m128i*)(dst + j), v0 ); _mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); } } #elif CV_NEON int16x8_t v_thresh = vdupq_n_s16(thresh), v_maxval = vdupq_n_s16(maxval); for( ; j <= roi.width - 8; j += 8 ) { uint16x8_t v_mask = vcgtq_s16(vld1q_s16(src + j), v_thresh); vst1q_s16(dst + j, vandq_s16(vreinterpretq_s16_u16(v_mask), v_maxval)); } #endif for( ; j < roi.width; j++ ) dst[j] = src[j] > thresh ? maxval : 0; } break; case THRESH_BINARY_INV: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128i thresh8 = _mm_set1_epi16(thresh), maxval8 = _mm_set1_epi16(maxval); for( ; j <= roi.width - 16; j += 16 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); v0 = _mm_cmpgt_epi16( v0, thresh8 ); v1 = _mm_cmpgt_epi16( v1, thresh8 ); v0 = _mm_andnot_si128( v0, maxval8 ); v1 = _mm_andnot_si128( v1, maxval8 ); _mm_storeu_si128((__m128i*)(dst + j), v0 ); _mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); } } #elif CV_NEON int16x8_t v_thresh = vdupq_n_s16(thresh), v_maxval = vdupq_n_s16(maxval); for( ; j <= roi.width - 8; j += 8 ) { uint16x8_t v_mask = vcleq_s16(vld1q_s16(src + j), v_thresh); vst1q_s16(dst + j, vandq_s16(vreinterpretq_s16_u16(v_mask), v_maxval)); } #endif for( ; j < roi.width; j++ ) dst[j] = src[j] <= thresh ? maxval : 0; } break; case THRESH_TRUNC: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128i thresh8 = _mm_set1_epi16(thresh); for( ; j <= roi.width - 16; j += 16 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); v0 = _mm_min_epi16( v0, thresh8 ); v1 = _mm_min_epi16( v1, thresh8 ); _mm_storeu_si128((__m128i*)(dst + j), v0 ); _mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); } } #elif CV_NEON int16x8_t v_thresh = vdupq_n_s16(thresh); for( ; j <= roi.width - 8; j += 8 ) vst1q_s16(dst + j, vminq_s16(vld1q_s16(src + j), v_thresh)); #endif for( ; j < roi.width; j++ ) dst[j] = std::min(src[j], thresh); } break; case THRESH_TOZERO: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128i thresh8 = _mm_set1_epi16(thresh); for( ; j <= roi.width - 16; j += 16 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); v0 = _mm_and_si128(v0, _mm_cmpgt_epi16(v0, thresh8)); v1 = _mm_and_si128(v1, _mm_cmpgt_epi16(v1, thresh8)); _mm_storeu_si128((__m128i*)(dst + j), v0 ); _mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); } } #elif CV_NEON int16x8_t v_thresh = vdupq_n_s16(thresh); for( ; j <= roi.width - 8; j += 8 ) { int16x8_t v_src = vld1q_s16(src + j); uint16x8_t v_mask = vcgtq_s16(v_src, v_thresh); vst1q_s16(dst + j, vandq_s16(vreinterpretq_s16_u16(v_mask), v_src)); } #endif for( ; j < roi.width; j++ ) { short v = src[j]; dst[j] = v > thresh ? v : 0; } } break; case THRESH_TOZERO_INV: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128i thresh8 = _mm_set1_epi16(thresh); for( ; j <= roi.width - 16; j += 16 ) { __m128i v0, v1; v0 = _mm_loadu_si128( (const __m128i*)(src + j) ); v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) ); v0 = _mm_andnot_si128(_mm_cmpgt_epi16(v0, thresh8), v0); v1 = _mm_andnot_si128(_mm_cmpgt_epi16(v1, thresh8), v1); _mm_storeu_si128((__m128i*)(dst + j), v0 ); _mm_storeu_si128((__m128i*)(dst + j + 8), v1 ); } } #elif CV_NEON int16x8_t v_thresh = vdupq_n_s16(thresh); for( ; j <= roi.width - 8; j += 8 ) { int16x8_t v_src = vld1q_s16(src + j); uint16x8_t v_mask = vcleq_s16(v_src, v_thresh); vst1q_s16(dst + j, vandq_s16(vreinterpretq_s16_u16(v_mask), v_src)); } #endif for( ; j < roi.width; j++ ) { short v = src[j]; dst[j] = v <= thresh ? v : 0; } } break; default: return CV_Error( CV_StsBadArg, "" ); } } static void thresh_32f( const Mat& _src, Mat& _dst, float thresh, float maxval, int type ) { int i, j; Size roi = _src.size(); roi.width *= _src.channels(); const float* src = _src.ptr(); float* dst = _dst.ptr(); size_t src_step = _src.step/sizeof(src[0]); size_t dst_step = _dst.step/sizeof(dst[0]); #if CV_SSE2 volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE); #endif if( _src.isContinuous() && _dst.isContinuous() ) { roi.width *= roi.height; roi.height = 1; } #ifdef HAVE_TEGRA_OPTIMIZATION if (cv::tegra::useTegra() && tegra::thresh_32f(_src, _dst, roi.width, roi.height, thresh, maxval, type)) return; #endif #if defined(HAVE_IPP) CV_IPP_CHECK() { IppiSize sz = { roi.width, roi.height }; switch( type ) { case THRESH_TRUNC: if (0 <= ippiThreshold_GT_32f_C1R(src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh)) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); break; case THRESH_TOZERO: if (0 <= ippiThreshold_LTVal_32f_C1R(src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh+FLT_EPSILON, 0)) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); break; case THRESH_TOZERO_INV: if (0 <= ippiThreshold_GTVal_32f_C1R(src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh, 0)) { CV_IMPL_ADD(CV_IMPL_IPP); return; } setIppErrorStatus(); break; } } #endif switch( type ) { case THRESH_BINARY: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128 thresh4 = _mm_set1_ps(thresh), maxval4 = _mm_set1_ps(maxval); for( ; j <= roi.width - 8; j += 8 ) { __m128 v0, v1; v0 = _mm_loadu_ps( src + j ); v1 = _mm_loadu_ps( src + j + 4 ); v0 = _mm_cmpgt_ps( v0, thresh4 ); v1 = _mm_cmpgt_ps( v1, thresh4 ); v0 = _mm_and_ps( v0, maxval4 ); v1 = _mm_and_ps( v1, maxval4 ); _mm_storeu_ps( dst + j, v0 ); _mm_storeu_ps( dst + j + 4, v1 ); } } #elif CV_NEON float32x4_t v_thresh = vdupq_n_f32(thresh); uint32x4_t v_maxval = vreinterpretq_u32_f32(vdupq_n_f32(maxval)); for( ; j <= roi.width - 4; j += 4 ) { float32x4_t v_src = vld1q_f32(src + j); uint32x4_t v_dst = vandq_u32(vcgtq_f32(v_src, v_thresh), v_maxval); vst1q_f32(dst + j, vreinterpretq_f32_u32(v_dst)); } #endif for( ; j < roi.width; j++ ) dst[j] = src[j] > thresh ? maxval : 0; } break; case THRESH_BINARY_INV: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128 thresh4 = _mm_set1_ps(thresh), maxval4 = _mm_set1_ps(maxval); for( ; j <= roi.width - 8; j += 8 ) { __m128 v0, v1; v0 = _mm_loadu_ps( src + j ); v1 = _mm_loadu_ps( src + j + 4 ); v0 = _mm_cmple_ps( v0, thresh4 ); v1 = _mm_cmple_ps( v1, thresh4 ); v0 = _mm_and_ps( v0, maxval4 ); v1 = _mm_and_ps( v1, maxval4 ); _mm_storeu_ps( dst + j, v0 ); _mm_storeu_ps( dst + j + 4, v1 ); } } #elif CV_NEON float32x4_t v_thresh = vdupq_n_f32(thresh); uint32x4_t v_maxval = vreinterpretq_u32_f32(vdupq_n_f32(maxval)); for( ; j <= roi.width - 4; j += 4 ) { float32x4_t v_src = vld1q_f32(src + j); uint32x4_t v_dst = vandq_u32(vcleq_f32(v_src, v_thresh), v_maxval); vst1q_f32(dst + j, vreinterpretq_f32_u32(v_dst)); } #endif for( ; j < roi.width; j++ ) dst[j] = src[j] <= thresh ? maxval : 0; } break; case THRESH_TRUNC: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128 thresh4 = _mm_set1_ps(thresh); for( ; j <= roi.width - 8; j += 8 ) { __m128 v0, v1; v0 = _mm_loadu_ps( src + j ); v1 = _mm_loadu_ps( src + j + 4 ); v0 = _mm_min_ps( v0, thresh4 ); v1 = _mm_min_ps( v1, thresh4 ); _mm_storeu_ps( dst + j, v0 ); _mm_storeu_ps( dst + j + 4, v1 ); } } #elif CV_NEON float32x4_t v_thresh = vdupq_n_f32(thresh); for( ; j <= roi.width - 4; j += 4 ) vst1q_f32(dst + j, vminq_f32(vld1q_f32(src + j), v_thresh)); #endif for( ; j < roi.width; j++ ) dst[j] = std::min(src[j], thresh); } break; case THRESH_TOZERO: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128 thresh4 = _mm_set1_ps(thresh); for( ; j <= roi.width - 8; j += 8 ) { __m128 v0, v1; v0 = _mm_loadu_ps( src + j ); v1 = _mm_loadu_ps( src + j + 4 ); v0 = _mm_and_ps(v0, _mm_cmpgt_ps(v0, thresh4)); v1 = _mm_and_ps(v1, _mm_cmpgt_ps(v1, thresh4)); _mm_storeu_ps( dst + j, v0 ); _mm_storeu_ps( dst + j + 4, v1 ); } } #elif CV_NEON float32x4_t v_thresh = vdupq_n_f32(thresh); for( ; j <= roi.width - 4; j += 4 ) { float32x4_t v_src = vld1q_f32(src + j); uint32x4_t v_dst = vandq_u32(vcgtq_f32(v_src, v_thresh), vreinterpretq_u32_f32(v_src)); vst1q_f32(dst + j, vreinterpretq_f32_u32(v_dst)); } #endif for( ; j < roi.width; j++ ) { float v = src[j]; dst[j] = v > thresh ? v : 0; } } break; case THRESH_TOZERO_INV: for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) { j = 0; #if CV_SSE2 if( useSIMD ) { __m128 thresh4 = _mm_set1_ps(thresh); for( ; j <= roi.width - 8; j += 8 ) { __m128 v0, v1; v0 = _mm_loadu_ps( src + j ); v1 = _mm_loadu_ps( src + j + 4 ); v0 = _mm_and_ps(v0, _mm_cmple_ps(v0, thresh4)); v1 = _mm_and_ps(v1, _mm_cmple_ps(v1, thresh4)); _mm_storeu_ps( dst + j, v0 ); _mm_storeu_ps( dst + j + 4, v1 ); } } #elif CV_NEON float32x4_t v_thresh = vdupq_n_f32(thresh); for( ; j <= roi.width - 4; j += 4 ) { float32x4_t v_src = vld1q_f32(src + j); uint32x4_t v_dst = vandq_u32(vcleq_f32(v_src, v_thresh), vreinterpretq_u32_f32(v_src)); vst1q_f32(dst + j, vreinterpretq_f32_u32(v_dst)); } #endif for( ; j < roi.width; j++ ) { float v = src[j]; dst[j] = v <= thresh ? v : 0; } } break; default: return CV_Error( CV_StsBadArg, "" ); } } static double getThreshVal_Otsu_8u( const Mat& _src ) { Size size = _src.size(); int step = (int) _src.step; if( _src.isContinuous() ) { size.width *= size.height; size.height = 1; step = size.width; } #if IPP_VERSION_X100 >= 801 && !defined(HAVE_IPP_ICV_ONLY) CV_IPP_CHECK() { IppiSize srcSize = { size.width, size.height }; Ipp8u thresh; CV_SUPPRESS_DEPRECATED_START IppStatus ok = ippiComputeThreshold_Otsu_8u_C1R(_src.ptr(), step, srcSize, &thresh); CV_SUPPRESS_DEPRECATED_END if (ok >= 0) { CV_IMPL_ADD(CV_IMPL_IPP); return thresh; } setIppErrorStatus(); } #endif const int N = 256; int i, j, h[N] = {0}; for( i = 0; i < size.height; i++ ) { const uchar* src = _src.ptr() + step*i; j = 0; #if CV_ENABLE_UNROLLED for( ; j <= size.width - 4; j += 4 ) { int v0 = src[j], v1 = src[j+1]; h[v0]++; h[v1]++; v0 = src[j+2]; v1 = src[j+3]; h[v0]++; h[v1]++; } #endif for( ; j < size.width; j++ ) h[src[j]]++; } double mu = 0, scale = 1./(size.width*size.height); for( i = 0; i < N; i++ ) mu += i*(double)h[i]; mu *= scale; double mu1 = 0, q1 = 0; double max_sigma = 0, max_val = 0; for( i = 0; i < N; i++ ) { double p_i, q2, mu2, sigma; p_i = h[i]*scale; mu1 *= q1; q1 += p_i; q2 = 1. - q1; if( std::min(q1,q2) < FLT_EPSILON || std::max(q1,q2) > 1. - FLT_EPSILON ) continue; mu1 = (mu1 + i*p_i)/q1; mu2 = (mu - q1*mu1)/q2; sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2); if( sigma > max_sigma ) { max_sigma = sigma; max_val = i; } } return max_val; } static double getThreshVal_Triangle_8u( const Mat& _src ) { Size size = _src.size(); int step = (int) _src.step; if( _src.isContinuous() ) { size.width *= size.height; size.height = 1; step = size.width; } const int N = 256; int i, j, h[N] = {0}; for( i = 0; i < size.height; i++ ) { const uchar* src = _src.ptr() + step*i; j = 0; #if CV_ENABLE_UNROLLED for( ; j <= size.width - 4; j += 4 ) { int v0 = src[j], v1 = src[j+1]; h[v0]++; h[v1]++; v0 = src[j+2]; v1 = src[j+3]; h[v0]++; h[v1]++; } #endif for( ; j < size.width; j++ ) h[src[j]]++; } int left_bound = 0, right_bound = 0, max_ind = 0, max = 0; int temp; bool isflipped = false; for( i = 0; i < N; i++ ) { if( h[i] > 0 ) { left_bound = i; break; } } if( left_bound > 0 ) left_bound--; for( i = N-1; i > 0; i-- ) { if( h[i] > 0 ) { right_bound = i; break; } } if( right_bound < N-1 ) right_bound++; for( i = 0; i < N; i++ ) { if( h[i] > max) { max = h[i]; max_ind = i; } } if( max_ind-left_bound < right_bound-max_ind) { isflipped = true; i = 0, j = N-1; while( i < j ) { temp = h[i]; h[i] = h[j]; h[j] = temp; i++; j--; } left_bound = N-1-right_bound; max_ind = N-1-max_ind; } double thresh = left_bound; double a, b, dist = 0, tempdist; /* * We do not need to compute precise distance here. Distance is maximized, so some constants can * be omitted. This speeds up a computation a bit. */ a = max; b = left_bound-max_ind; for( i = left_bound+1; i <= max_ind; i++ ) { tempdist = a*i + b*h[i]; if( tempdist > dist) { dist = tempdist; thresh = i; } } thresh--; if( isflipped ) thresh = N-1-thresh; return thresh; } class ThresholdRunner : public ParallelLoopBody { public: ThresholdRunner(Mat _src, Mat _dst, double _thresh, double _maxval, int _thresholdType) { src = _src; dst = _dst; thresh = _thresh; maxval = _maxval; thresholdType = _thresholdType; } void operator () ( const Range& range ) const { int row0 = range.start; int row1 = range.end; Mat srcStripe = src.rowRange(row0, row1); Mat dstStripe = dst.rowRange(row0, row1); if (srcStripe.depth() == CV_8U) { thresh_8u( srcStripe, dstStripe, (uchar)thresh, (uchar)maxval, thresholdType ); } else if( srcStripe.depth() == CV_16S ) { thresh_16s( srcStripe, dstStripe, (short)thresh, (short)maxval, thresholdType ); } else if( srcStripe.depth() == CV_32F ) { thresh_32f( srcStripe, dstStripe, (float)thresh, (float)maxval, thresholdType ); } } private: Mat src; Mat dst; double thresh; double maxval; int thresholdType; }; #ifdef HAVE_OPENCL static bool ocl_threshold( InputArray _src, OutputArray _dst, double & thresh, double maxval, int thresh_type ) { int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), kercn = ocl::predictOptimalVectorWidth(_src, _dst), ktype = CV_MAKE_TYPE(depth, kercn); bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; if ( !(thresh_type == THRESH_BINARY || thresh_type == THRESH_BINARY_INV || thresh_type == THRESH_TRUNC || thresh_type == THRESH_TOZERO || thresh_type == THRESH_TOZERO_INV) || (!doubleSupport && depth == CV_64F)) return false; const char * const thresholdMap[] = { "THRESH_BINARY", "THRESH_BINARY_INV", "THRESH_TRUNC", "THRESH_TOZERO", "THRESH_TOZERO_INV" }; ocl::Device dev = ocl::Device::getDefault(); int stride_size = dev.isIntel() && (dev.type() & ocl::Device::TYPE_GPU) ? 4 : 1; ocl::Kernel k("threshold", ocl::imgproc::threshold_oclsrc, format("-D %s -D T=%s -D T1=%s -D STRIDE_SIZE=%d%s", thresholdMap[thresh_type], ocl::typeToStr(ktype), ocl::typeToStr(depth), stride_size, doubleSupport ? " -D DOUBLE_SUPPORT" : "")); if (k.empty()) return false; UMat src = _src.getUMat(); _dst.create(src.size(), type); UMat dst = _dst.getUMat(); if (depth <= CV_32S) thresh = cvFloor(thresh); const double min_vals[] = { 0, CHAR_MIN, 0, SHRT_MIN, INT_MIN, -FLT_MAX, -DBL_MAX, 0 }; double min_val = min_vals[depth]; k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn, kercn), ocl::KernelArg::Constant(Mat(1, 1, depth, Scalar::all(thresh))), ocl::KernelArg::Constant(Mat(1, 1, depth, Scalar::all(maxval))), ocl::KernelArg::Constant(Mat(1, 1, depth, Scalar::all(min_val)))); size_t globalsize[2] = { dst.cols * cn / kercn, dst.rows }; globalsize[1] = (globalsize[1] + stride_size - 1) / stride_size; return k.run(2, globalsize, NULL, false); } #endif } double cv::threshold( InputArray _src, OutputArray _dst, double thresh, double maxval, int type ) { CV_OCL_RUN_(_src.dims() <= 2 && _dst.isUMat(), ocl_threshold(_src, _dst, thresh, maxval, type), thresh) Mat src = _src.getMat(); int automatic_thresh = (type & ~CV_THRESH_MASK); type &= THRESH_MASK; CV_Assert( automatic_thresh != (CV_THRESH_OTSU | CV_THRESH_TRIANGLE) ); if( automatic_thresh == CV_THRESH_OTSU ) { CV_Assert( src.type() == CV_8UC1 ); thresh = getThreshVal_Otsu_8u( src ); } else if( automatic_thresh == CV_THRESH_TRIANGLE ) { CV_Assert( src.type() == CV_8UC1 ); thresh = getThreshVal_Triangle_8u( src ); } _dst.create( src.size(), src.type() ); Mat dst = _dst.getMat(); if( src.depth() == CV_8U ) { int ithresh = cvFloor(thresh); thresh = ithresh; int imaxval = cvRound(maxval); if( type == THRESH_TRUNC ) imaxval = ithresh; imaxval = saturate_cast(imaxval); if( ithresh < 0 || ithresh >= 255 ) { if( type == THRESH_BINARY || type == THRESH_BINARY_INV || ((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < 0) || (type == THRESH_TOZERO && ithresh >= 255) ) { int v = type == THRESH_BINARY ? (ithresh >= 255 ? 0 : imaxval) : type == THRESH_BINARY_INV ? (ithresh >= 255 ? imaxval : 0) : /*type == THRESH_TRUNC ? imaxval :*/ 0; dst.setTo(v); } else src.copyTo(dst); return thresh; } thresh = ithresh; maxval = imaxval; } else if( src.depth() == CV_16S ) { int ithresh = cvFloor(thresh); thresh = ithresh; int imaxval = cvRound(maxval); if( type == THRESH_TRUNC ) imaxval = ithresh; imaxval = saturate_cast(imaxval); if( ithresh < SHRT_MIN || ithresh >= SHRT_MAX ) { if( type == THRESH_BINARY || type == THRESH_BINARY_INV || ((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < SHRT_MIN) || (type == THRESH_TOZERO && ithresh >= SHRT_MAX) ) { int v = type == THRESH_BINARY ? (ithresh >= SHRT_MAX ? 0 : imaxval) : type == THRESH_BINARY_INV ? (ithresh >= SHRT_MAX ? imaxval : 0) : /*type == THRESH_TRUNC ? imaxval :*/ 0; dst.setTo(v); } else src.copyTo(dst); return thresh; } thresh = ithresh; maxval = imaxval; } else if( src.depth() == CV_32F ) ; else CV_Error( CV_StsUnsupportedFormat, "" ); parallel_for_(Range(0, dst.rows), ThresholdRunner(src, dst, thresh, maxval, type), dst.total()/(double)(1<<16)); return thresh; } void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue, int method, int type, int blockSize, double delta ) { Mat src = _src.getMat(); CV_Assert( src.type() == CV_8UC1 ); CV_Assert( blockSize % 2 == 1 && blockSize > 1 ); Size size = src.size(); _dst.create( size, src.type() ); Mat dst = _dst.getMat(); if( maxValue < 0 ) { dst = Scalar(0); return; } Mat mean; if( src.data != dst.data ) mean = dst; if( method == ADAPTIVE_THRESH_MEAN_C ) boxFilter( src, mean, src.type(), Size(blockSize, blockSize), Point(-1,-1), true, BORDER_REPLICATE ); else if( method == ADAPTIVE_THRESH_GAUSSIAN_C ) GaussianBlur( src, mean, Size(blockSize, blockSize), 0, 0, BORDER_REPLICATE ); else CV_Error( CV_StsBadFlag, "Unknown/unsupported adaptive threshold method" ); int i, j; uchar imaxval = saturate_cast(maxValue); int idelta = type == THRESH_BINARY ? cvCeil(delta) : cvFloor(delta); uchar tab[768]; if( type == CV_THRESH_BINARY ) for( i = 0; i < 768; i++ ) tab[i] = (uchar)(i - 255 > -idelta ? imaxval : 0); else if( type == CV_THRESH_BINARY_INV ) for( i = 0; i < 768; i++ ) tab[i] = (uchar)(i - 255 <= -idelta ? imaxval : 0); else CV_Error( CV_StsBadFlag, "Unknown/unsupported threshold type" ); if( src.isContinuous() && mean.isContinuous() && dst.isContinuous() ) { size.width *= size.height; size.height = 1; } for( i = 0; i < size.height; i++ ) { const uchar* sdata = src.ptr(i); const uchar* mdata = mean.ptr(i); uchar* ddata = dst.ptr(i); for( j = 0; j < size.width; j++ ) ddata[j] = tab[sdata[j] - mdata[j] + 255]; } } CV_IMPL double cvThreshold( const void* srcarr, void* dstarr, double thresh, double maxval, int type ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst; CV_Assert( src.size == dst.size && src.channels() == dst.channels() && (src.depth() == dst.depth() || dst.depth() == CV_8U)); thresh = cv::threshold( src, dst, thresh, maxval, type ); if( dst0.data != dst.data ) dst.convertTo( dst0, dst0.depth() ); return thresh; } CV_IMPL void cvAdaptiveThreshold( const void *srcIm, void *dstIm, double maxValue, int method, int type, int blockSize, double delta ) { cv::Mat src = cv::cvarrToMat(srcIm), dst = cv::cvarrToMat(dstIm); CV_Assert( src.size == dst.size && src.type() == dst.type() ); cv::adaptiveThreshold( src, dst, maxValue, method, type, blockSize, delta ); } /* End of file. */