/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/photo.hpp" #include "opencv2/imgproc.hpp" #include "hdr_common.hpp" namespace cv { class CalibrateDebevecImpl CV_FINAL : public CalibrateDebevec { public: CalibrateDebevecImpl(int _samples, float _lambda, bool _random) : name("CalibrateDebevec"), samples(_samples), lambda(_lambda), random(_random), w(triangleWeights()) { } void process(InputArrayOfArrays src, OutputArray dst, InputArray _times) CV_OVERRIDE { CV_INSTRUMENT_REGION(); // check inputs std::vector images; src.getMatVector(images); Mat times = _times.getMat(); CV_Assert(images.size() == times.total()); checkImageDimensions(images); CV_Assert(images[0].depth() == CV_8U); CV_Assert(times.type() == CV_32FC1); // create output int channels = images[0].channels(); int CV_32FCC = CV_MAKETYPE(CV_32F, channels); int rows = images[0].rows; int cols = images[0].cols; dst.create(LDR_SIZE, 1, CV_32FCC); Mat result = dst.getMat(); // pick pixel locations (either random or in a rectangular grid) std::vector points; points.reserve(samples); if(random) { for(int i = 0; i < samples; i++) { points.push_back(Point(rand() % cols, rand() % rows)); } } else { int x_points = static_cast(sqrt(static_cast(samples) * cols / rows)); CV_Assert(0 < x_points && x_points <= cols); int y_points = samples / x_points; CV_Assert(0 < y_points && y_points <= rows); int step_x = cols / x_points; int step_y = rows / y_points; for(int i = 0, x = step_x / 2; i < x_points; i++, x += step_x) { for(int j = 0, y = step_y / 2; j < y_points; j++, y += step_y) { if( 0 <= x && x < cols && 0 <= y && y < rows ) { points.push_back(Point(x, y)); } } } // we can have slightly less grid points than specified //samples = static_cast(points.size()); } // we need enough equations to ensure a sufficiently overdetermined system // (maybe only as a warning) //CV_Assert(points.size() * (images.size() - 1) >= LDR_SIZE); // solve for imaging system response function, over each channel separately std::vector result_split(channels); for(int ch = 0; ch < channels; ch++) { // initialize system of linear equations Mat A = Mat::zeros((int)points.size() * (int)images.size() + LDR_SIZE + 1, LDR_SIZE + (int)points.size(), CV_32F); Mat B = Mat::zeros(A.rows, 1, CV_32F); // include the data-fitting equations int k = 0; for(size_t i = 0; i < points.size(); i++) { for(size_t j = 0; j < images.size(); j++) { // val = images[j].at(points[i].y, points[i].x)[ch] int val = images[j].ptr()[channels*(points[i].y * cols + points[i].x) + ch]; float wij = w.at(val); A.at(k, val) = wij; A.at(k, LDR_SIZE + (int)i) = -wij; B.at(k, 0) = wij * log(times.at((int)j)); k++; } } // fix the curve by setting its middle value to 0 A.at(k, LDR_SIZE / 2) = 1; k++; // include the smoothness equations for(int i = 0; i < (LDR_SIZE - 2); i++) { float wi = w.at(i + 1); A.at(k, i) = lambda * wi; A.at(k, i + 1) = -2 * lambda * wi; A.at(k, i + 2) = lambda * wi; k++; } // solve the overdetermined system using SVD (least-squares problem) Mat solution; solve(A, B, solution, DECOMP_SVD); solution.rowRange(0, LDR_SIZE).copyTo(result_split[ch]); } // combine log-exposures and take its exponent merge(result_split, result); exp(result, result); } int getSamples() const CV_OVERRIDE { return samples; } void setSamples(int val) CV_OVERRIDE { samples = val; } float getLambda() const CV_OVERRIDE { return lambda; } void setLambda(float val) CV_OVERRIDE { lambda = val; } bool getRandom() const CV_OVERRIDE { return random; } void setRandom(bool val) CV_OVERRIDE { random = val; } void write(FileStorage& fs) const CV_OVERRIDE { writeFormat(fs); fs << "name" << name << "samples" << samples << "lambda" << lambda << "random" << static_cast(random); } void read(const FileNode& fn) CV_OVERRIDE { FileNode n = fn["name"]; CV_Assert(n.isString() && String(n) == name); samples = fn["samples"]; lambda = fn["lambda"]; int random_val = fn["random"]; random = (random_val != 0); } protected: String name; // calibration algorithm identifier int samples; // number of pixel locations to sample float lambda; // constant that determines the amount of smoothness bool random; // whether to sample locations randomly or in a grid shape Mat w; // weighting function for corresponding pixel values }; Ptr createCalibrateDebevec(int samples, float lambda, bool random) { return makePtr(samples, lambda, random); } class CalibrateRobertsonImpl CV_FINAL : public CalibrateRobertson { public: CalibrateRobertsonImpl(int _max_iter, float _threshold) : name("CalibrateRobertson"), max_iter(_max_iter), threshold(_threshold), weight(RobertsonWeights()) { } void process(InputArrayOfArrays src, OutputArray dst, InputArray _times) CV_OVERRIDE { CV_INSTRUMENT_REGION(); std::vector images; src.getMatVector(images); Mat times = _times.getMat(); CV_Assert(images.size() == times.total()); checkImageDimensions(images); CV_Assert(images[0].depth() == CV_8U); int channels = images[0].channels(); int CV_32FCC = CV_MAKETYPE(CV_32F, channels); CV_Assert(channels >= 1 && channels <= 3); dst.create(LDR_SIZE, 1, CV_32FCC); Mat response = dst.getMat(); response = linearResponse(3) / (LDR_SIZE / 2.0f); Mat card = Mat::zeros(LDR_SIZE, 1, CV_32FCC); for(size_t i = 0; i < images.size(); i++) { uchar *ptr = images[i].ptr(); for(size_t pos = 0; pos < images[i].total(); pos++) { for(int c = 0; c < channels; c++, ptr++) { card.at(*ptr)[c] += 1; } } } card = 1.0 / card; Ptr merge = createMergeRobertson(); for(int iter = 0; iter < max_iter; iter++) { radiance = Mat::zeros(images[0].size(), CV_32FCC); merge->process(images, radiance, times, response); Mat new_response = Mat::zeros(LDR_SIZE, 1, CV_32FC3); for(size_t i = 0; i < images.size(); i++) { uchar *ptr = images[i].ptr(); float* rad_ptr = radiance.ptr(); for(size_t pos = 0; pos < images[i].total(); pos++) { for(int c = 0; c < channels; c++, ptr++, rad_ptr++) { new_response.at(*ptr)[c] += times.at((int)i) * *rad_ptr; } } } new_response = new_response.mul(card); for(int c = 0; c < 3; c++) { float middle = new_response.at(LDR_SIZE / 2)[c]; for(int i = 0; i < LDR_SIZE; i++) { new_response.at(i)[c] /= middle; } } float diff = static_cast(sum(sum(abs(new_response - response)))[0] / channels); new_response.copyTo(response); if(diff < threshold) { break; } } } int getMaxIter() const CV_OVERRIDE { return max_iter; } void setMaxIter(int val) CV_OVERRIDE { max_iter = val; } float getThreshold() const CV_OVERRIDE { return threshold; } void setThreshold(float val) CV_OVERRIDE { threshold = val; } Mat getRadiance() const CV_OVERRIDE { return radiance; } void write(FileStorage& fs) const CV_OVERRIDE { writeFormat(fs); fs << "name" << name << "max_iter" << max_iter << "threshold" << threshold; } void read(const FileNode& fn) CV_OVERRIDE { FileNode n = fn["name"]; CV_Assert(n.isString() && String(n) == name); max_iter = fn["max_iter"]; threshold = fn["threshold"]; } protected: String name; int max_iter; float threshold; Mat weight, radiance; }; Ptr createCalibrateRobertson(int max_iter, float threshold) { return makePtr(max_iter, threshold); } }