#include #include #include "opencv2/core/core.hpp" #include "opencv2/core/utility.hpp" #include "opencv2/core/ocl.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include "opencv2/features2d.hpp" #include "opencv2/calib3d.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/nonfree.hpp" using namespace cv; const int LOOP_NUM = 10; const int GOOD_PTS_MAX = 50; const float GOOD_PORTION = 0.15f; int64 work_begin = 0; int64 work_end = 0; static void workBegin() { work_begin = getTickCount(); } static void workEnd() { work_end = getTickCount() - work_begin; } static double getTime() { return work_end /((double)getTickFrequency() )* 1000.; } template struct SURFDetector { KPDetector surf; SURFDetector(double hessian = 800.0) :surf(hessian) { } template void operator()(const T& in, const T& mask, std::vector& pts, T& descriptors, bool useProvided = false) { surf(in, mask, pts, descriptors, useProvided); } }; template struct SURFMatcher { KPMatcher matcher; template void match(const T& in1, const T& in2, std::vector& matches) { matcher.match(in1, in2, matches); } }; static Mat drawGoodMatches( const Mat& img1, const Mat& img2, const std::vector& keypoints1, const std::vector& keypoints2, std::vector& matches, std::vector& scene_corners_ ) { //-- Sort matches and preserve top 10% matches std::sort(matches.begin(), matches.end()); std::vector< DMatch > good_matches; double minDist = matches.front().distance; double maxDist = matches.back().distance; const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION)); for( int i = 0; i < ptsPairs; i++ ) { good_matches.push_back( matches[i] ); } std::cout << "\nMax distance: " << maxDist << std::endl; std::cout << "Min distance: " << minDist << std::endl; std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl; // drawing the results Mat img_matches; drawMatches( img1, keypoints1, img2, keypoints2, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), std::vector(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object std::vector obj; std::vector scene; for( size_t i = 0; i < good_matches.size(); i++ ) { //-- Get the keypoints from the good matches obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt ); scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt ); } //-- Get the corners from the image_1 ( the object to be "detected" ) std::vector obj_corners(4); obj_corners[0] = Point(0,0); obj_corners[1] = Point( img1.cols, 0 ); obj_corners[2] = Point( img1.cols, img1.rows ); obj_corners[3] = Point( 0, img1.rows ); std::vector scene_corners(4); Mat H = findHomography( obj, scene, RANSAC ); perspectiveTransform( obj_corners, scene_corners, H); scene_corners_ = scene_corners; //-- Draw lines between the corners (the mapped object in the scene - image_2 ) line( img_matches, scene_corners[0] + Point2f( (float)img1.cols, 0), scene_corners[1] + Point2f( (float)img1.cols, 0), Scalar( 0, 255, 0), 2, LINE_AA ); line( img_matches, scene_corners[1] + Point2f( (float)img1.cols, 0), scene_corners[2] + Point2f( (float)img1.cols, 0), Scalar( 0, 255, 0), 2, LINE_AA ); line( img_matches, scene_corners[2] + Point2f( (float)img1.cols, 0), scene_corners[3] + Point2f( (float)img1.cols, 0), Scalar( 0, 255, 0), 2, LINE_AA ); line( img_matches, scene_corners[3] + Point2f( (float)img1.cols, 0), scene_corners[0] + Point2f( (float)img1.cols, 0), Scalar( 0, 255, 0), 2, LINE_AA ); return img_matches; } //////////////////////////////////////////////////// // This program demonstrates the usage of SURF_OCL. // use cpu findHomography interface to calculate the transformation matrix int main(int argc, char* argv[]) { const char* keys = "{ h help | false | print help message }" "{ l left | box.png | specify left image }" "{ r right | box_in_scene.png | specify right image }" "{ o output | SURF_output.jpg | specify output save path }" "{ m cpu_mode | false | run without OpenCL }"; CommandLineParser cmd(argc, argv, keys); if (cmd.has("help")) { std::cout << "Usage: surf_matcher [options]" << std::endl; std::cout << "Available options:" << std::endl; cmd.printMessage(); return EXIT_SUCCESS; } if (cmd.has("cpu_mode")) { ocl::setUseOpenCL(false); std::cout << "OpenCL was disabled" << std::endl; } UMat img1, img2; std::string outpath = cmd.get("o"); std::string leftName = cmd.get("l"); imread(leftName, IMREAD_GRAYSCALE).copyTo(img1); if(img1.empty()) { std::cout << "Couldn't load " << leftName << std::endl; cmd.printMessage(); return EXIT_FAILURE; } std::string rightName = cmd.get("r"); imread(rightName, IMREAD_GRAYSCALE).copyTo(img2); if(img2.empty()) { std::cout << "Couldn't load " << rightName << std::endl; cmd.printMessage(); return EXIT_FAILURE; } double surf_time = 0.; //declare input/output std::vector keypoints1, keypoints2; std::vector matches; UMat _descriptors1, _descriptors2; Mat descriptors1 = _descriptors1.getMat(ACCESS_RW), descriptors2 = _descriptors2.getMat(ACCESS_RW); //instantiate detectors/matchers SURFDetector surf; SURFMatcher matcher; //-- start of timing section for (int i = 0; i <= LOOP_NUM; i++) { if(i == 1) workBegin(); surf(img1.getMat(ACCESS_READ), Mat(), keypoints1, descriptors1); surf(img2.getMat(ACCESS_READ), Mat(), keypoints2, descriptors2); matcher.match(descriptors1, descriptors2, matches); } workEnd(); std::cout << "FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; std::cout << "FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; surf_time = getTime(); std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n"; std::vector corner; Mat img_matches = drawGoodMatches(img1.getMat(ACCESS_READ), img2.getMat(ACCESS_READ), keypoints1, keypoints2, matches, corner); //-- Show detected matches namedWindow("surf matches", 0); imshow("surf matches", img_matches); imwrite(outpath, img_matches); waitKey(0); return EXIT_SUCCESS; }