/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include ///////////////////////////////////////////////////////////////////////////////////////// // Default LSD parameters // SIGMA_SCALE 0.6 - Sigma for Gaussian filter is computed as sigma = sigma_scale/scale. // QUANT 2.0 - Bound to the quantization error on the gradient norm. // ANG_TH 22.5 - Gradient angle tolerance in degrees. // LOG_EPS 0.0 - Detection threshold: -log10(NFA) > log_eps // DENSITY_TH 0.7 - Minimal density of region points in rectangle. // N_BINS 1024 - Number of bins in pseudo-ordering of gradient modulus. #define M_3_2_PI (3 * CV_PI) / 2 // 3/2 pi #define M_2__PI (2 * CV_PI) // 2 pi #ifndef M_LN10 #define M_LN10 2.30258509299404568402 #endif #define NOTDEF double(-1024.0) // Label for pixels with undefined gradient. #define NOTUSED 0 // Label for pixels not used in yet. #define USED 1 // Label for pixels already used in detection. #define RELATIVE_ERROR_FACTOR 100.0 const double DEG_TO_RADS = CV_PI / 180; #define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x)) struct edge { cv::Point p; bool taken; }; ///////////////////////////////////////////////////////////////////////////////////////// inline double distSq(const double x1, const double y1, const double x2, const double y2) { return (x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1); } inline double dist(const double x1, const double y1, const double x2, const double y2) { return sqrt(distSq(x1, y1, x2, y2)); } // Signed angle difference inline double angle_diff_signed(const double& a, const double& b) { double diff = a - b; while(diff <= -CV_PI) diff += M_2__PI; while(diff > CV_PI) diff -= M_2__PI; return diff; } // Absolute value angle difference inline double angle_diff(const double& a, const double& b) { return std::fabs(angle_diff_signed(a, b)); } // Compare doubles by relative error. inline bool double_equal(const double& a, const double& b) { // trivial case if(a == b) return true; double abs_diff = fabs(a - b); double aa = fabs(a); double bb = fabs(b); double abs_max = (aa > bb)? aa : bb; if(abs_max < DBL_MIN) abs_max = DBL_MIN; return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON); } inline bool AsmallerB_XoverY(const edge& a, const edge& b) { if (a.p.x == b.p.x) return a.p.y < b.p.y; else return a.p.x < b.p.x; } /** * Computes the natural logarithm of the absolute value of * the gamma function of x using Windschitl method. * See http://www.rskey.org/gamma.htm */ inline double log_gamma_windschitl(const double& x) { return 0.918938533204673 + (x-0.5)*log(x) - x + 0.5*x*log(x*sinh(1/x) + 1/(810.0*pow(x, 6.0))); } /** * Computes the natural logarithm of the absolute value of * the gamma function of x using the Lanczos approximation. * See http://www.rskey.org/gamma.htm */ inline double log_gamma_lanczos(const double& x) { static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477, 8687.24529705, 1168.92649479, 83.8676043424, 2.50662827511 }; double a = (x + 0.5) * log(x + 5.5) - (x + 5.5); double b = 0; for(int n = 0; n < 7; ++n) { a -= log(x + double(n)); b += q[n] * pow(x, double(n)); } return a + log(b); } /////////////////////////////////////////////////////////////////////////////////////////////////////////////// namespace cv{ class LineSegmentDetectorImpl CV_FINAL : public LineSegmentDetector { public: /** * Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows: * * @param _refine How should the lines found be refined? * LSD_REFINE_NONE - No refinement applied. * LSD_REFINE_STD - Standard refinement is applied. E.g. breaking arches into smaller line approximations. * LSD_REFINE_ADV - Advanced refinement. Number of false alarms is calculated, * lines are refined through increase of precision, decrement in size, etc. * @param _scale The scale of the image that will be used to find the lines. Range (0..1]. * @param _sigma_scale Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale. * @param _quant Bound to the quantization error on the gradient norm. * @param _ang_th Gradient angle tolerance in degrees. * @param _log_eps Detection threshold: -log10(NFA) > _log_eps * @param _density_th Minimal density of aligned region points in rectangle. * @param _n_bins Number of bins in pseudo-ordering of gradient modulus. */ LineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8, double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5, double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024); /** * Detect lines in the input image. * * @param _image A grayscale(CV_8UC1) input image. * If only a roi needs to be selected, use * lsd_ptr->detect(image(roi), ..., lines); * lines += Scalar(roi.x, roi.y, roi.x, roi.y); * @param _lines Return: A vector of Vec4f elements specifying the beginning and ending point of a line. * Where Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. * Returned lines are strictly oriented depending on the gradient. * @param width Return: Vector of widths of the regions, where the lines are found. E.g. Width of line. * @param prec Return: Vector of precisions with which the lines are found. * @param nfa Return: Vector containing number of false alarms in the line region, with precision of 10%. * The bigger the value, logarithmically better the detection. * * -1 corresponds to 10 mean false alarms * * 0 corresponds to 1 mean false alarm * * 1 corresponds to 0.1 mean false alarms * This vector will be calculated _only_ when the objects type is REFINE_ADV */ void detect(InputArray _image, OutputArray _lines, OutputArray width = noArray(), OutputArray prec = noArray(), OutputArray nfa = noArray()) CV_OVERRIDE; /** * Draw lines on the given canvas. * * @param image The image, where lines will be drawn. * Should have the size of the image, where the lines were found * @param lines The lines that need to be drawn */ void drawSegments(InputOutputArray _image, InputArray lines) CV_OVERRIDE; /** * Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2. * * @param size The size of the image, where lines1 and lines2 were found. * @param lines1 The first lines that need to be drawn. Color - Blue. * @param lines2 The second lines that need to be drawn. Color - Red. * @param image An optional image, where lines will be drawn. * Should have the size of the image, where the lines were found * @return The number of mismatching pixels between lines1 and lines2. */ int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) CV_OVERRIDE; private: Mat image; Mat scaled_image; Mat_ angles; // in rads Mat_ modgrad; Mat_ used; int img_width; int img_height; double LOG_NT; bool w_needed; bool p_needed; bool n_needed; const double SCALE; const int doRefine; const double SIGMA_SCALE; const double QUANT; const double ANG_TH; const double LOG_EPS; const double DENSITY_TH; const int N_BINS; struct RegionPoint { int x; int y; uchar* used; double angle; double modgrad; }; struct normPoint { Point2i p; int norm; }; std::vector ordered_points; struct rect { double x1, y1, x2, y2; // first and second point of the line segment double width; // rectangle width double x, y; // center of the rectangle double theta; // angle double dx,dy; // (dx,dy) is vector oriented as the line segment double prec; // tolerance angle double p; // probability of a point with angle within 'prec' }; LineSegmentDetectorImpl& operator= (const LineSegmentDetectorImpl&); // to quiet MSVC /** * Detect lines in the whole input image. * * @param lines Return: A vector of Vec4f elements specifying the beginning and ending point of a line. * Where Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. * Returned lines are strictly oriented depending on the gradient. * @param widths Return: Vector of widths of the regions, where the lines are found. E.g. Width of line. * @param precisions Return: Vector of precisions with which the lines are found. * @param nfas Return: Vector containing number of false alarms in the line region, with precision of 10%. * The bigger the value, logarithmically better the detection. * * -1 corresponds to 10 mean false alarms * * 0 corresponds to 1 mean false alarm * * 1 corresponds to 0.1 mean false alarms */ void flsd(std::vector& lines, std::vector& widths, std::vector& precisions, std::vector& nfas); /** * Finds the angles and the gradients of the image. Generates a list of pseudo ordered points. * * @param threshold The minimum value of the angle that is considered defined, otherwise NOTDEF * @param n_bins The number of bins with which gradients are ordered by, using bucket sort. * @param ordered_points Return: Vector of coordinate points that are pseudo ordered by magnitude. * Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins. */ void ll_angle(const double& threshold, const unsigned int& n_bins); /** * Grow a region starting from point s with a defined precision, * returning the containing points size and the angle of the gradients. * * @param s Starting point for the region. * @param reg Return: Vector of points, that are part of the region * @param reg_angle Return: The mean angle of the region. * @param prec The precision by which each region angle should be aligned to the mean. */ void region_grow(const Point2i& s, std::vector& reg, double& reg_angle, const double& prec); /** * Finds the bounding rotated rectangle of a region. * * @param reg The region of points, from which the rectangle to be constructed from. * @param reg_angle The mean angle of the region. * @param prec The precision by which points were found. * @param p Probability of a point with angle within 'prec'. * @param rec Return: The generated rectangle. */ void region2rect(const std::vector& reg, const double reg_angle, const double prec, const double p, rect& rec) const; /** * Compute region's angle as the principal inertia axis of the region. * @return Regions angle. */ double get_theta(const std::vector& reg, const double& x, const double& y, const double& reg_angle, const double& prec) const; /** * An estimation of the angle tolerance is performed by the standard deviation of the angle at points * near the region's starting point. Then, a new region is grown starting from the same point, but using the * estimated angle tolerance. If this fails to produce a rectangle with the right density of region points, * 'reduce_region_radius' is called to try to satisfy this condition. */ bool refine(std::vector& reg, double reg_angle, const double prec, double p, rect& rec, const double& density_th); /** * Reduce the region size, by elimination the points far from the starting point, until that leads to * rectangle with the right density of region points or to discard the region if too small. */ bool reduce_region_radius(std::vector& reg, double reg_angle, const double prec, double p, rect& rec, double density, const double& density_th); /** * Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps). * @return The new NFA value. */ double rect_improve(rect& rec) const; /** * Calculates the number of correctly aligned points within the rectangle. * @return The new NFA value. */ double rect_nfa(const rect& rec) const; /** * Computes the NFA values based on the total number of points, points that agree. * n, k, p are the binomial parameters. * @return The new NFA value. */ double nfa(const int& n, const int& k, const double& p) const; /** * Is the point at place 'address' aligned to angle theta, up to precision 'prec'? * @return Whether the point is aligned. */ bool isAligned(int x, int y, const double& theta, const double& prec) const; public: // Compare norm static inline bool compare_norm( const normPoint& n1, const normPoint& n2 ) { return (n1.norm > n2.norm); } }; ///////////////////////////////////////////////////////////////////////////////////////// CV_EXPORTS Ptr createLineSegmentDetector( int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th, double _log_eps, double _density_th, int _n_bins) { return makePtr( _refine, _scale, _sigma_scale, _quant, _ang_th, _log_eps, _density_th, _n_bins); } ///////////////////////////////////////////////////////////////////////////////////////// LineSegmentDetectorImpl::LineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th, double _log_eps, double _density_th, int _n_bins) : img_width(0), img_height(0), LOG_NT(0), w_needed(false), p_needed(false), n_needed(false), SCALE(_scale), doRefine(_refine), SIGMA_SCALE(_sigma_scale), QUANT(_quant), ANG_TH(_ang_th), LOG_EPS(_log_eps), DENSITY_TH(_density_th), N_BINS(_n_bins) { CV_Assert(_scale > 0 && _sigma_scale > 0 && _quant >= 0 && _ang_th > 0 && _ang_th < 180 && _density_th >= 0 && _density_th < 1 && _n_bins > 0); } void LineSegmentDetectorImpl::detect(InputArray _image, OutputArray _lines, OutputArray _width, OutputArray _prec, OutputArray _nfa) { CV_INSTRUMENT_REGION(); image = _image.getMat(); CV_Assert(!image.empty() && image.type() == CV_8UC1); std::vector lines; std::vector w, p, n; w_needed = _width.needed(); p_needed = _prec.needed(); if (doRefine < LSD_REFINE_ADV) n_needed = false; else n_needed = _nfa.needed(); flsd(lines, w, p, n); Mat(lines).copyTo(_lines); if(w_needed) Mat(w).copyTo(_width); if(p_needed) Mat(p).copyTo(_prec); if(n_needed) Mat(n).copyTo(_nfa); // Clear used structures ordered_points.clear(); } void LineSegmentDetectorImpl::flsd(std::vector& lines, std::vector& widths, std::vector& precisions, std::vector& nfas) { // Angle tolerance const double prec = CV_PI * ANG_TH / 180; const double p = ANG_TH / 180; const double rho = QUANT / sin(prec); // gradient magnitude threshold if(SCALE != 1) { Mat gaussian_img; const double sigma = (SCALE < 1)?(SIGMA_SCALE / SCALE):(SIGMA_SCALE); const double sprec = 3; const unsigned int h = (unsigned int)(ceil(sigma * sqrt(2 * sprec * log(10.0)))); Size ksize(1 + 2 * h, 1 + 2 * h); // kernel size GaussianBlur(image, gaussian_img, ksize, sigma); // Scale image to needed size resize(gaussian_img, scaled_image, Size(), SCALE, SCALE, INTER_LINEAR_EXACT); ll_angle(rho, N_BINS); } else { scaled_image = image; ll_angle(rho, N_BINS); } LOG_NT = 5 * (log10(double(img_width)) + log10(double(img_height))) / 2 + log10(11.0); const size_t min_reg_size = size_t(-LOG_NT/log10(p)); // minimal number of points in region that can give a meaningful event // // Initialize region only when needed // Mat region = Mat::zeros(scaled_image.size(), CV_8UC1); used = Mat_::zeros(scaled_image.size()); // zeros = NOTUSED std::vector reg; // Search for line segments for(size_t i = 0, points_size = ordered_points.size(); i < points_size; ++i) { const Point2i& point = ordered_points[i].p; if((used.at(point) == NOTUSED) && (angles.at(point) != NOTDEF)) { double reg_angle; region_grow(ordered_points[i].p, reg, reg_angle, prec); // Ignore small regions if(reg.size() < min_reg_size) { continue; } // Construct rectangular approximation for the region rect rec; region2rect(reg, reg_angle, prec, p, rec); double log_nfa = -1; if(doRefine > LSD_REFINE_NONE) { // At least REFINE_STANDARD lvl. if(!refine(reg, reg_angle, prec, p, rec, DENSITY_TH)) { continue; } if(doRefine >= LSD_REFINE_ADV) { // Compute NFA log_nfa = rect_improve(rec); if(log_nfa <= LOG_EPS) { continue; } } } // Found new line // Add the offset rec.x1 += 0.5; rec.y1 += 0.5; rec.x2 += 0.5; rec.y2 += 0.5; // scale the result values if a sub-sampling was performed if(SCALE != 1) { rec.x1 /= SCALE; rec.y1 /= SCALE; rec.x2 /= SCALE; rec.y2 /= SCALE; rec.width /= SCALE; } //Store the relevant data lines.push_back(Vec4f(float(rec.x1), float(rec.y1), float(rec.x2), float(rec.y2))); if(w_needed) widths.push_back(rec.width); if(p_needed) precisions.push_back(rec.p); if(n_needed && doRefine >= LSD_REFINE_ADV) nfas.push_back(log_nfa); } } } void LineSegmentDetectorImpl::ll_angle(const double& threshold, const unsigned int& n_bins) { //Initialize data angles = Mat_(scaled_image.size()); modgrad = Mat_(scaled_image.size()); img_width = scaled_image.cols; img_height = scaled_image.rows; // Undefined the down and right boundaries angles.row(img_height - 1).setTo(NOTDEF); angles.col(img_width - 1).setTo(NOTDEF); // Computing gradient for remaining pixels double max_grad = -1; for(int y = 0; y < img_height - 1; ++y) { const uchar* scaled_image_row = scaled_image.ptr(y); const uchar* next_scaled_image_row = scaled_image.ptr(y+1); double* angles_row = angles.ptr(y); double* modgrad_row = modgrad.ptr(y); for(int x = 0; x < img_width-1; ++x) { int DA = next_scaled_image_row[x + 1] - scaled_image_row[x]; int BC = scaled_image_row[x + 1] - next_scaled_image_row[x]; int gx = DA + BC; // gradient x component int gy = DA - BC; // gradient y component double norm = std::sqrt((gx * gx + gy * gy) / 4.0); // gradient norm modgrad_row[x] = norm; // store gradient if (norm <= threshold) // norm too small, gradient no defined { angles_row[x] = NOTDEF; } else { angles_row[x] = fastAtan2(float(gx), float(-gy)) * DEG_TO_RADS; // gradient angle computation if (norm > max_grad) { max_grad = norm; } } } } // Compute histogram of gradient values double bin_coef = (max_grad > 0) ? double(n_bins - 1) / max_grad : 0; // If all image is smooth, max_grad <= 0 for(int y = 0; y < img_height - 1; ++y) { const double* modgrad_row = modgrad.ptr(y); for(int x = 0; x < img_width - 1; ++x) { normPoint _point; int i = int(modgrad_row[x] * bin_coef); _point.p = Point(x, y); _point.norm = i; ordered_points.push_back(_point); } } // Sort std::sort(ordered_points.begin(), ordered_points.end(), compare_norm); } void LineSegmentDetectorImpl::region_grow(const Point2i& s, std::vector& reg, double& reg_angle, const double& prec) { reg.clear(); // Point to this region RegionPoint seed; seed.x = s.x; seed.y = s.y; seed.used = &used.at(s); reg_angle = angles.at(s); seed.angle = reg_angle; seed.modgrad = modgrad.at(s); reg.push_back(seed); float sumdx = float(std::cos(reg_angle)); float sumdy = float(std::sin(reg_angle)); *seed.used = USED; //Try neighboring regions for (size_t i = 0;i(yy); const double* angles_row = angles.ptr(yy); const double* modgrad_row = modgrad.ptr(yy); for(int xx = xx_min; xx <= xx_max; ++xx) { uchar& is_used = used_row[xx]; if(is_used != USED && (isAligned(xx, yy, reg_angle, prec))) { const double& angle = angles_row[xx]; // Add point is_used = USED; RegionPoint region_point; region_point.x = xx; region_point.y = yy; region_point.used = &is_used; region_point.modgrad = modgrad_row[xx]; region_point.angle = angle; reg.push_back(region_point); // Update region's angle sumdx += cos(float(angle)); sumdy += sin(float(angle)); // reg_angle is used in the isAligned, so it needs to be updates? reg_angle = fastAtan2(sumdy, sumdx) * DEG_TO_RADS; } } } } } void LineSegmentDetectorImpl::region2rect(const std::vector& reg, const double reg_angle, const double prec, const double p, rect& rec) const { double x = 0, y = 0, sum = 0; for(size_t i = 0; i < reg.size(); ++i) { const RegionPoint& pnt = reg[i]; const double& weight = pnt.modgrad; x += double(pnt.x) * weight; y += double(pnt.y) * weight; sum += weight; } // Weighted sum must differ from 0 CV_Assert(sum > 0); x /= sum; y /= sum; double theta = get_theta(reg, x, y, reg_angle, prec); // Find length and width double dx = cos(theta); double dy = sin(theta); double l_min = 0, l_max = 0, w_min = 0, w_max = 0; for(size_t i = 0; i < reg.size(); ++i) { double regdx = double(reg[i].x) - x; double regdy = double(reg[i].y) - y; double l = regdx * dx + regdy * dy; double w = -regdx * dy + regdy * dx; if(l > l_max) l_max = l; else if(l < l_min) l_min = l; if(w > w_max) w_max = w; else if(w < w_min) w_min = w; } // Store values rec.x1 = x + l_min * dx; rec.y1 = y + l_min * dy; rec.x2 = x + l_max * dx; rec.y2 = y + l_max * dy; rec.width = w_max - w_min; rec.x = x; rec.y = y; rec.theta = theta; rec.dx = dx; rec.dy = dy; rec.prec = prec; rec.p = p; // Min width of 1 pixel if(rec.width < 1.0) rec.width = 1.0; } double LineSegmentDetectorImpl::get_theta(const std::vector& reg, const double& x, const double& y, const double& reg_angle, const double& prec) const { double Ixx = 0.0; double Iyy = 0.0; double Ixy = 0.0; // Compute inertia matrix for(size_t i = 0; i < reg.size(); ++i) { const double& regx = reg[i].x; const double& regy = reg[i].y; const double& weight = reg[i].modgrad; double dx = regx - x; double dy = regy - y; Ixx += dy * dy * weight; Iyy += dx * dx * weight; Ixy -= dx * dy * weight; } // Check if inertia matrix is null CV_Assert(!(double_equal(Ixx, 0) && double_equal(Iyy, 0) && double_equal(Ixy, 0))); // Compute smallest eigenvalue double lambda = 0.5 * (Ixx + Iyy - sqrt((Ixx - Iyy) * (Ixx - Iyy) + 4.0 * Ixy * Ixy)); // Compute angle double theta = (fabs(Ixx)>fabs(Iyy))? double(fastAtan2(float(lambda - Ixx), float(Ixy))): double(fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs theta *= DEG_TO_RADS; // Correct angle by 180 deg if necessary if(angle_diff(theta, reg_angle) > prec) { theta += CV_PI; } return theta; } bool LineSegmentDetectorImpl::refine(std::vector& reg, double reg_angle, const double prec, double p, rect& rec, const double& density_th) { double density = double(reg.size()) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width); if (density >= density_th) { return true; } // Try to reduce angle tolerance double xc = double(reg[0].x); double yc = double(reg[0].y); const double& ang_c = reg[0].angle; double sum = 0, s_sum = 0; int n = 0; for (size_t i = 0; i < reg.size(); ++i) { *(reg[i].used) = NOTUSED; if (dist(xc, yc, reg[i].x, reg[i].y) < rec.width) { const double& angle = reg[i].angle; double ang_d = angle_diff_signed(angle, ang_c); sum += ang_d; s_sum += ang_d * ang_d; ++n; } } CV_Assert(n > 0); double mean_angle = sum / double(n); // 2 * standard deviation double tau = 2.0 * sqrt((s_sum - 2.0 * mean_angle * sum) / double(n) + mean_angle * mean_angle); // Try new region region_grow(Point(reg[0].x, reg[0].y), reg, reg_angle, tau); if (reg.size() < 2) { return false; } region2rect(reg, reg_angle, prec, p, rec); density = double(reg.size()) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width); if (density < density_th) { return reduce_region_radius(reg, reg_angle, prec, p, rec, density, density_th); } else { return true; } } bool LineSegmentDetectorImpl::reduce_region_radius(std::vector& reg, double reg_angle, const double prec, double p, rect& rec, double density, const double& density_th) { // Compute region's radius double xc = double(reg[0].x); double yc = double(reg[0].y); double radSq1 = distSq(xc, yc, rec.x1, rec.y1); double radSq2 = distSq(xc, yc, rec.x2, rec.y2); double radSq = radSq1 > radSq2 ? radSq1 : radSq2; while(density < density_th) { radSq *= 0.75*0.75; // Reduce region's radius to 75% of its value // Remove points from the region and update 'used' map for (size_t i = 0; i < reg.size(); ++i) { if(distSq(xc, yc, double(reg[i].x), double(reg[i].y)) > radSq) { // Remove point from the region *(reg[i].used) = NOTUSED; std::swap(reg[i], reg[reg.size() - 1]); reg.pop_back(); --i; // To avoid skipping one point } } if(reg.size() < 2) { return false; } // Re-compute rectangle region2rect(reg ,reg_angle, prec, p, rec); // Re-compute region points density density = double(reg.size()) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width); } return true; } double LineSegmentDetectorImpl::rect_improve(rect& rec) const { double delta = 0.5; double delta_2 = delta / 2.0; double log_nfa = rect_nfa(rec); if(log_nfa > LOG_EPS) return log_nfa; // Good rectangle // Try to improve // Finer precision rect r = rect(rec); // Copy for(int n = 0; n < 5; ++n) { r.p /= 2; r.prec = r.p * CV_PI; double log_nfa_new = rect_nfa(r); if(log_nfa_new > log_nfa) { log_nfa = log_nfa_new; rec = rect(r); } } if(log_nfa > LOG_EPS) return log_nfa; // Try to reduce width r = rect(rec); for(unsigned int n = 0; n < 5; ++n) { if((r.width - delta) >= 0.5) { r.width -= delta; double log_nfa_new = rect_nfa(r); if(log_nfa_new > log_nfa) { rec = rect(r); log_nfa = log_nfa_new; } } } if(log_nfa > LOG_EPS) return log_nfa; // Try to reduce one side of rectangle r = rect(rec); for(unsigned int n = 0; n < 5; ++n) { if((r.width - delta) >= 0.5) { r.x1 += -r.dy * delta_2; r.y1 += r.dx * delta_2; r.x2 += -r.dy * delta_2; r.y2 += r.dx * delta_2; r.width -= delta; double log_nfa_new = rect_nfa(r); if(log_nfa_new > log_nfa) { rec = rect(r); log_nfa = log_nfa_new; } } } if(log_nfa > LOG_EPS) return log_nfa; // Try to reduce other side of rectangle r = rect(rec); for(unsigned int n = 0; n < 5; ++n) { if((r.width - delta) >= 0.5) { r.x1 -= -r.dy * delta_2; r.y1 -= r.dx * delta_2; r.x2 -= -r.dy * delta_2; r.y2 -= r.dx * delta_2; r.width -= delta; double log_nfa_new = rect_nfa(r); if(log_nfa_new > log_nfa) { rec = rect(r); log_nfa = log_nfa_new; } } } if(log_nfa > LOG_EPS) return log_nfa; // Try finer precision r = rect(rec); for(unsigned int n = 0; n < 5; ++n) { if((r.width - delta) >= 0.5) { r.p /= 2; r.prec = r.p * CV_PI; double log_nfa_new = rect_nfa(r); if(log_nfa_new > log_nfa) { rec = rect(r); log_nfa = log_nfa_new; } } } return log_nfa; } double LineSegmentDetectorImpl::rect_nfa(const rect& rec) const { int total_pts = 0, alg_pts = 0; double half_width = rec.width / 2.0; double dyhw = rec.dy * half_width; double dxhw = rec.dx * half_width; edge ordered_x[4]; edge* min_y = &ordered_x[0]; edge* max_y = &ordered_x[0]; // Will be used for loop range ordered_x[0].p.x = int(rec.x1 - dyhw); ordered_x[0].p.y = int(rec.y1 + dxhw); ordered_x[0].taken = false; ordered_x[1].p.x = int(rec.x2 - dyhw); ordered_x[1].p.y = int(rec.y2 + dxhw); ordered_x[1].taken = false; ordered_x[2].p.x = int(rec.x2 + dyhw); ordered_x[2].p.y = int(rec.y2 - dxhw); ordered_x[2].taken = false; ordered_x[3].p.x = int(rec.x1 + dyhw); ordered_x[3].p.y = int(rec.y1 - dxhw); ordered_x[3].taken = false; std::sort(ordered_x, ordered_x + 4, AsmallerB_XoverY); // Find min y. And mark as taken. find max y. for(unsigned int i = 1; i < 4; ++i) { if(min_y->p.y > ordered_x[i].p.y) {min_y = &ordered_x[i]; } if(max_y->p.y < ordered_x[i].p.y) {max_y = &ordered_x[i]; } } min_y->taken = true; // Find leftmost untaken point; edge* leftmost = 0; for(unsigned int i = 0; i < 4; ++i) { if(!ordered_x[i].taken) { if(!leftmost) // if uninitialized { leftmost = &ordered_x[i]; } else if (leftmost->p.x > ordered_x[i].p.x) { leftmost = &ordered_x[i]; } } } CV_Assert(leftmost != NULL); leftmost->taken = true; // Find rightmost untaken point; edge* rightmost = 0; for(unsigned int i = 0; i < 4; ++i) { if(!ordered_x[i].taken) { if(!rightmost) // if uninitialized { rightmost = &ordered_x[i]; } else if (rightmost->p.x < ordered_x[i].p.x) { rightmost = &ordered_x[i]; } } } CV_Assert(rightmost != NULL); rightmost->taken = true; // Find last untaken point; edge* tailp = 0; for(unsigned int i = 0; i < 4; ++i) { if(!ordered_x[i].taken) { if(!tailp) // if uninitialized { tailp = &ordered_x[i]; } else if (tailp->p.x > ordered_x[i].p.x) { tailp = &ordered_x[i]; } } } CV_Assert(tailp != NULL); tailp->taken = true; double flstep = (min_y->p.y != leftmost->p.y) ? (min_y->p.x - leftmost->p.x) / (min_y->p.y - leftmost->p.y) : 0; //first left step double slstep = (leftmost->p.y != tailp->p.x) ? (leftmost->p.x - tailp->p.x) / (leftmost->p.y - tailp->p.x) : 0; //second left step double frstep = (min_y->p.y != rightmost->p.y) ? (min_y->p.x - rightmost->p.x) / (min_y->p.y - rightmost->p.y) : 0; //first right step double srstep = (rightmost->p.y != tailp->p.x) ? (rightmost->p.x - tailp->p.x) / (rightmost->p.y - tailp->p.x) : 0; //second right step double lstep = flstep, rstep = frstep; double left_x = min_y->p.x, right_x = min_y->p.x; // Loop around all points in the region and count those that are aligned. int min_iter = min_y->p.y; int max_iter = max_y->p.y; for(int y = min_iter; y <= max_iter; ++y) { if (y < 0 || y >= img_height) continue; for(int x = int(left_x); x <= int(right_x); ++x) { if (x < 0 || x >= img_width) continue; ++total_pts; if(isAligned(x, y, rec.theta, rec.prec)) { ++alg_pts; } } if(y >= leftmost->p.y) { lstep = slstep; } if(y >= rightmost->p.y) { rstep = srstep; } left_x += lstep; right_x += rstep; } return nfa(total_pts, alg_pts, rec.p); } double LineSegmentDetectorImpl::nfa(const int& n, const int& k, const double& p) const { // Trivial cases if(n == 0 || k == 0) { return -LOG_NT; } if(n == k) { return -LOG_NT - double(n) * log10(p); } double p_term = p / (1 - p); double log1term = (double(n) + 1) - log_gamma(double(k) + 1) - log_gamma(double(n-k) + 1) + double(k) * log(p) + double(n-k) * log(1.0 - p); double term = exp(log1term); if(double_equal(term, 0)) { if(k > n * p) return -log1term / M_LN10 - LOG_NT; else return -LOG_NT; } // Compute more terms if needed double bin_tail = term; double tolerance = 0.1; // an error of 10% in the result is accepted for(int i = k + 1; i <= n; ++i) { double bin_term = double(n - i + 1) / double(i); double mult_term = bin_term * p_term; term *= mult_term; bin_tail += term; if(bin_term < 1) { double err = term * ((1 - pow(mult_term, double(n-i+1))) / (1 - mult_term) - 1); if(err < tolerance * fabs(-log10(bin_tail) - LOG_NT) * bin_tail) break; } } return -log10(bin_tail) - LOG_NT; } inline bool LineSegmentDetectorImpl::isAligned(int x, int y, const double& theta, const double& prec) const { if(x < 0 || y < 0 || x >= angles.cols || y >= angles.rows) { return false; } const double& a = angles.at(y, x); if(a == NOTDEF) { return false; } // It is assumed that 'theta' and 'a' are in the range [-pi,pi] double n_theta = theta - a; if(n_theta < 0) { n_theta = -n_theta; } if(n_theta > M_3_2_PI) { n_theta -= M_2__PI; if(n_theta < 0) n_theta = -n_theta; } return n_theta <= prec; } void LineSegmentDetectorImpl::drawSegments(InputOutputArray _image, InputArray lines) { CV_INSTRUMENT_REGION(); CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3)); if (_image.channels() == 1) { cvtColor(_image, _image, COLOR_GRAY2BGR); } Mat _lines = lines.getMat(); const int N = _lines.checkVector(4); CV_Assert(_lines.depth() == CV_32F || _lines.depth() == CV_32S); // Draw segments if (_lines.depth() == CV_32F) { for (int i = 0; i < N; ++i) { const Vec4f& v = _lines.at(i); const Point2f b(v[0], v[1]); const Point2f e(v[2], v[3]); line(_image, b, e, Scalar(0, 0, 255), 1); } } else { for (int i = 0; i < N; ++i) { const Vec4i& v = _lines.at(i); const Point2i b(v[0], v[1]); const Point2i e(v[2], v[3]); line(_image, b, e, Scalar(0, 0, 255), 1); } } } int LineSegmentDetectorImpl::compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image) { CV_INSTRUMENT_REGION(); Size sz = size; if (_image.needed() && _image.size() != size) sz = _image.size(); CV_Assert(!sz.empty()); Mat_ I1 = Mat_::zeros(sz); Mat_ I2 = Mat_::zeros(sz); Mat _lines1 = lines1.getMat(); Mat _lines2 = lines2.getMat(); const int N1 = _lines1.checkVector(4); const int N2 = _lines2.checkVector(4); CV_Assert(_lines1.depth() == CV_32F || _lines1.depth() == CV_32S); CV_Assert(_lines2.depth() == CV_32F || _lines2.depth() == CV_32S); if (_lines1.depth() == CV_32S) _lines1.convertTo(_lines1, CV_32F); if (_lines2.depth() == CV_32S) _lines2.convertTo(_lines2, CV_32F); // Draw segments for(int i = 0; i < N1; ++i) { const Point2f b(_lines1.at(i)[0], _lines1.at(i)[1]); const Point2f e(_lines1.at(i)[2], _lines1.at(i)[3]); line(I1, b, e, Scalar::all(255), 1); } for(int i = 0; i < N2; ++i) { const Point2f b(_lines2.at(i)[0], _lines2.at(i)[1]); const Point2f e(_lines2.at(i)[2], _lines2.at(i)[3]); line(I2, b, e, Scalar::all(255), 1); } // Count the pixels that don't agree Mat Ixor; bitwise_xor(I1, I2, Ixor); int N = countNonZero(Ixor); if (_image.needed()) { CV_Assert(_image.channels() == 3); Mat img = _image.getMatRef(); CV_Assert(img.isContinuous() && I1.isContinuous() && I2.isContinuous()); for (unsigned int i = 0; i < I1.total(); ++i) { uchar i1 = I1.ptr()[i]; uchar i2 = I2.ptr()[i]; if (i1 || i2) { unsigned int base_idx = i * 3; if (i1) img.ptr()[base_idx] = 255; else img.ptr()[base_idx] = 0; img.ptr()[base_idx + 1] = 0; if (i2) img.ptr()[base_idx + 2] = 255; else img.ptr()[base_idx + 2] = 0; } } } return N; } } // namespace cv