/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2014, Itseez Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "kdtree.hpp" /****************************************************************************************\ * K-Nearest Neighbors Classifier * \****************************************************************************************/ namespace cv { namespace ml { KNearest::Params::Params(int k, bool isclassifier_, int Emax_, int algorithmType_) : defaultK(k), isclassifier(isclassifier_), Emax(Emax_), algorithmType(algorithmType_) { } class KNearestImpl : public KNearest { public: KNearestImpl(const Params& p) { params = p; } virtual ~KNearestImpl() {} Params getParams() const { return params; } void setParams(const Params& p) { params = p; } bool isClassifier() const { return params.isclassifier; } bool isTrained() const { return !samples.empty(); } String getDefaultModelName() const { return "opencv_ml_knn"; } void clear() { samples.release(); responses.release(); } int getVarCount() const { return samples.cols; } bool train( const Ptr& data, int flags ) { Mat new_samples = data->getTrainSamples(ROW_SAMPLE); Mat new_responses; data->getTrainResponses().convertTo(new_responses, CV_32F); bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty(); CV_Assert( new_samples.type() == CV_32F ); if( !update ) { clear(); } else { CV_Assert( new_samples.cols == samples.cols && new_responses.cols == responses.cols ); } samples.push_back(new_samples); responses.push_back(new_responses); return true; } void findNearestCore( const Mat& _samples, int k0, const Range& range, Mat* results, Mat* neighbor_responses, Mat* dists, float* presult ) const { int testidx, baseidx, i, j, d = samples.cols, nsamples = samples.rows; int testcount = range.end - range.start; int k = std::min(k0, nsamples); AutoBuffer buf(testcount*k*2); float* dbuf = buf; float* rbuf = dbuf + testcount*k; const float* rptr = responses.ptr(); for( testidx = 0; testidx < testcount; testidx++ ) { for( i = 0; i < k; i++ ) { dbuf[testidx*k + i] = FLT_MAX; rbuf[testidx*k + i] = 0.f; } } for( baseidx = 0; baseidx < nsamples; baseidx++ ) { for( testidx = 0; testidx < testcount; testidx++ ) { const float* v = samples.ptr(baseidx); const float* u = _samples.ptr(testidx + range.start); float s = 0; for( i = 0; i <= d - 4; i += 4 ) { float t0 = u[i] - v[i], t1 = u[i+1] - v[i+1]; float t2 = u[i+2] - v[i+2], t3 = u[i+3] - v[i+3]; s += t0*t0 + t1*t1 + t2*t2 + t3*t3; } for( ; i < d; i++ ) { float t0 = u[i] - v[i]; s += t0*t0; } Cv32suf si; si.f = (float)s; Cv32suf* dd = (Cv32suf*)(&dbuf[testidx*k]); float* nr = &rbuf[testidx*k]; for( i = k; i > 0; i-- ) if( si.i >= dd[i-1].i ) break; if( i >= k ) continue; for( j = k-2; j >= i; j-- ) { dd[j+1].i = dd[j].i; nr[j+1] = nr[j]; } dd[i].i = si.i; nr[i] = rptr[baseidx]; } } float result = 0.f; float inv_scale = 1.f/k; for( testidx = 0; testidx < testcount; testidx++ ) { if( neighbor_responses ) { float* nr = neighbor_responses->ptr(testidx + range.start); for( j = 0; j < k; j++ ) nr[j] = rbuf[testidx*k + j]; for( ; j < k0; j++ ) nr[j] = 0.f; } if( dists ) { float* dptr = dists->ptr(testidx + range.start); for( j = 0; j < k; j++ ) dptr[j] = dbuf[testidx*k + j]; for( ; j < k0; j++ ) dptr[j] = 0.f; } if( results || testidx+range.start == 0 ) { if( !params.isclassifier || k == 1 ) { float s = 0.f; for( j = 0; j < k; j++ ) s += rbuf[testidx*k + j]; result = (float)(s*inv_scale); } else { float* rp = rbuf + testidx*k; for( j = k-1; j > 0; j-- ) { bool swap_fl = false; for( i = 0; i < j; i++ ) { if( rp[i] > rp[i+1] ) { std::swap(rp[i], rp[i+1]); swap_fl = true; } } if( !swap_fl ) break; } result = rp[0]; int prev_start = 0; int best_count = 0; for( j = 1; j <= k; j++ ) { if( j == k || rp[j] != rp[j-1] ) { int count = j - prev_start; if( best_count < count ) { best_count = count; result = rp[j-1]; } prev_start = j; } } } if( results ) results->at(testidx + range.start) = result; if( presult && testidx+range.start == 0 ) *presult = result; } } } struct findKNearestInvoker : public ParallelLoopBody { findKNearestInvoker(const KNearestImpl* _p, int _k, const Mat& __samples, Mat* __results, Mat* __neighbor_responses, Mat* __dists, float* _presult) { p = _p; k = _k; _samples = &__samples; _results = __results; _neighbor_responses = __neighbor_responses; _dists = __dists; presult = _presult; } void operator()( const Range& range ) const { int delta = std::min(range.end - range.start, 256); for( int start = range.start; start < range.end; start += delta ) { p->findNearestCore( *_samples, k, Range(start, std::min(start + delta, range.end)), _results, _neighbor_responses, _dists, presult ); } } const KNearestImpl* p; int k; const Mat* _samples; Mat* _results; Mat* _neighbor_responses; Mat* _dists; float* presult; }; float findNearest( InputArray _samples, int k, OutputArray _results, OutputArray _neighborResponses, OutputArray _dists ) const { float result = 0.f; CV_Assert( 0 < k ); Mat test_samples = _samples.getMat(); CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols ); int testcount = test_samples.rows; if( testcount == 0 ) { _results.release(); _neighborResponses.release(); _dists.release(); return 0.f; } Mat res, nr, d, *pres = 0, *pnr = 0, *pd = 0; if( _results.needed() ) { _results.create(testcount, 1, CV_32F); pres = &(res = _results.getMat()); } if( _neighborResponses.needed() ) { _neighborResponses.create(testcount, k, CV_32F); pnr = &(nr = _neighborResponses.getMat()); } if( _dists.needed() ) { _dists.create(testcount, k, CV_32F); pd = &(d = _dists.getMat()); } findKNearestInvoker invoker(this, k, test_samples, pres, pnr, pd, &result); parallel_for_(Range(0, testcount), invoker); //invoker(Range(0, testcount)); return result; } float predict(InputArray inputs, OutputArray outputs, int) const { return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() ); } void write( FileStorage& fs ) const { fs << "is_classifier" << (int)params.isclassifier; fs << "default_k" << params.defaultK; fs << "samples" << samples; fs << "responses" << responses; } void read( const FileNode& fn ) { clear(); params.isclassifier = (int)fn["is_classifier"] != 0; params.defaultK = (int)fn["default_k"]; fn["samples"] >> samples; fn["responses"] >> responses; } Mat samples; Mat responses; Params params; }; class KNearestKDTreeImpl : public KNearest { public: KNearestKDTreeImpl(const Params& p) { params = p; } virtual ~KNearestKDTreeImpl() {} Params getParams() const { return params; } void setParams(const Params& p) { params = p; } bool isClassifier() const { return params.isclassifier; } bool isTrained() const { return !samples.empty(); } String getDefaultModelName() const { return "opencv_ml_knn_kd"; } void clear() { samples.release(); responses.release(); } int getVarCount() const { return samples.cols; } bool train( const Ptr& data, int flags ) { Mat new_samples = data->getTrainSamples(ROW_SAMPLE); Mat new_responses; data->getTrainResponses().convertTo(new_responses, CV_32F); bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty(); CV_Assert( new_samples.type() == CV_32F ); if( !update ) { clear(); } else { CV_Assert( new_samples.cols == samples.cols && new_responses.cols == responses.cols ); } samples.push_back(new_samples); responses.push_back(new_responses); tr.build(samples); return true; } float findNearest( InputArray _samples, int k, OutputArray _results, OutputArray _neighborResponses, OutputArray _dists ) const { float result = 0.f; CV_Assert( 0 < k ); Mat test_samples = _samples.getMat(); CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols ); int testcount = test_samples.rows; if( testcount == 0 ) { _results.release(); _neighborResponses.release(); _dists.release(); return 0.f; } Mat res, nr, d; if( _results.needed() ) { _results.create(testcount, 1, CV_32F); res = _results.getMat(); } if( _neighborResponses.needed() ) { _neighborResponses.create(testcount, k, CV_32F); nr = _neighborResponses.getMat(); } if( _dists.needed() ) { _dists.create(testcount, k, CV_32F); d = _dists.getMat(); } for (int i=0; ii) { _res = res.row(i); } if (nr.rows>i) { _nr = nr.row(i); } if (d.rows>i) { _d = d.row(i); } tr.findNearest(test_samples.row(i), k, params.Emax, _res, _nr, _d, noArray()); } return result; // currently always 0 } float predict(InputArray inputs, OutputArray outputs, int) const { return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() ); } void write( FileStorage& fs ) const { fs << "is_classifier" << (int)params.isclassifier; fs << "default_k" << params.defaultK; fs << "samples" << samples; fs << "responses" << responses; } void read( const FileNode& fn ) { clear(); params.isclassifier = (int)fn["is_classifier"] != 0; params.defaultK = (int)fn["default_k"]; fn["samples"] >> samples; fn["responses"] >> responses; } KDTree tr; Mat samples; Mat responses; Params params; }; Ptr KNearest::create(const Params& p) { if (KDTREE==p.algorithmType) { return makePtr(p); } return makePtr(p); } } } /* End of file */