/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2008, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* OpenCV wrapper of reference implementation of [1] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, J. Nuevo and Adrien Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013 http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pdf @author Eugene Khvedchenya */ #include "precomp.hpp" #include "kaze/AKAZEFeatures.h" #include namespace cv { using namespace std; class AKAZE_Impl : public AKAZE { public: AKAZE_Impl(int _descriptor_type, int _descriptor_size, int _descriptor_channels, float _threshold, int _octaves, int _sublevels, int _diffusivity) : descriptor(_descriptor_type) , descriptor_channels(_descriptor_channels) , descriptor_size(_descriptor_size) , threshold(_threshold) , octaves(_octaves) , sublevels(_sublevels) , diffusivity(_diffusivity) { } virtual ~AKAZE_Impl() CV_OVERRIDE { } void setDescriptorType(int dtype) CV_OVERRIDE { descriptor = dtype; } int getDescriptorType() const CV_OVERRIDE { return descriptor; } void setDescriptorSize(int dsize) CV_OVERRIDE { descriptor_size = dsize; } int getDescriptorSize() const CV_OVERRIDE { return descriptor_size; } void setDescriptorChannels(int dch) CV_OVERRIDE { descriptor_channels = dch; } int getDescriptorChannels() const CV_OVERRIDE { return descriptor_channels; } void setThreshold(double threshold_) CV_OVERRIDE { threshold = (float)threshold_; } double getThreshold() const CV_OVERRIDE { return threshold; } void setNOctaves(int octaves_) CV_OVERRIDE { octaves = octaves_; } int getNOctaves() const CV_OVERRIDE { return octaves; } void setNOctaveLayers(int octaveLayers_) CV_OVERRIDE { sublevels = octaveLayers_; } int getNOctaveLayers() const CV_OVERRIDE { return sublevels; } void setDiffusivity(int diff_) CV_OVERRIDE { diffusivity = diff_; } int getDiffusivity() const CV_OVERRIDE { return diffusivity; } // returns the descriptor size in bytes int descriptorSize() const CV_OVERRIDE { switch (descriptor) { case DESCRIPTOR_KAZE: case DESCRIPTOR_KAZE_UPRIGHT: return 64; case DESCRIPTOR_MLDB: case DESCRIPTOR_MLDB_UPRIGHT: // We use the full length binary descriptor -> 486 bits if (descriptor_size == 0) { int t = (6 + 36 + 120) * descriptor_channels; return divUp(t, 8); } else { // We use the random bit selection length binary descriptor return divUp(descriptor_size, 8); } default: return -1; } } // returns the descriptor type int descriptorType() const CV_OVERRIDE { switch (descriptor) { case DESCRIPTOR_KAZE: case DESCRIPTOR_KAZE_UPRIGHT: return CV_32F; case DESCRIPTOR_MLDB: case DESCRIPTOR_MLDB_UPRIGHT: return CV_8U; default: return -1; } } // returns the default norm type int defaultNorm() const CV_OVERRIDE { switch (descriptor) { case DESCRIPTOR_KAZE: case DESCRIPTOR_KAZE_UPRIGHT: return NORM_L2; case DESCRIPTOR_MLDB: case DESCRIPTOR_MLDB_UPRIGHT: return NORM_HAMMING; default: return -1; } } void detectAndCompute(InputArray image, InputArray mask, std::vector& keypoints, OutputArray descriptors, bool useProvidedKeypoints) CV_OVERRIDE { CV_INSTRUMENT_REGION() CV_Assert( ! image.empty() ); AKAZEOptions options; options.descriptor = descriptor; options.descriptor_channels = descriptor_channels; options.descriptor_size = descriptor_size; options.img_width = image.cols(); options.img_height = image.rows(); options.dthreshold = threshold; options.omax = octaves; options.nsublevels = sublevels; options.diffusivity = diffusivity; AKAZEFeatures impl(options); impl.Create_Nonlinear_Scale_Space(image); if (!useProvidedKeypoints) { impl.Feature_Detection(keypoints); } if (!mask.empty()) { KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat()); } if(descriptors.needed()) { impl.Compute_Descriptors(keypoints, descriptors); CV_Assert((descriptors.empty() || descriptors.cols() == descriptorSize())); CV_Assert((descriptors.empty() || (descriptors.type() == descriptorType()))); } } void write(FileStorage& fs) const CV_OVERRIDE { writeFormat(fs); fs << "descriptor" << descriptor; fs << "descriptor_channels" << descriptor_channels; fs << "descriptor_size" << descriptor_size; fs << "threshold" << threshold; fs << "octaves" << octaves; fs << "sublevels" << sublevels; fs << "diffusivity" << diffusivity; } void read(const FileNode& fn) CV_OVERRIDE { descriptor = (int)fn["descriptor"]; descriptor_channels = (int)fn["descriptor_channels"]; descriptor_size = (int)fn["descriptor_size"]; threshold = (float)fn["threshold"]; octaves = (int)fn["octaves"]; sublevels = (int)fn["sublevels"]; diffusivity = (int)fn["diffusivity"]; } int descriptor; int descriptor_channels; int descriptor_size; float threshold; int octaves; int sublevels; int diffusivity; }; Ptr AKAZE::create(int descriptor_type, int descriptor_size, int descriptor_channels, float threshold, int octaves, int sublevels, int diffusivity) { return makePtr(descriptor_type, descriptor_size, descriptor_channels, threshold, octaves, sublevels, diffusivity); } String AKAZE::getDefaultName() const { return (Feature2D::getDefaultName() + ".AKAZE"); } }