/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2009, PhaseSpace Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The names of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/calib3d/calib3d.hpp" #include using namespace cv; LevMarqSparse::LevMarqSparse() { Vis_index = X = prevP = P = deltaP = err = JtJ_diag = S = hX = NULL; U = ea = V = inv_V_star = eb = Yj = NULL; num_cams = 0, num_points = 0, num_err_param = 0; num_cam_param = 0, num_point_param = 0; A = B = W = NULL; } LevMarqSparse::~LevMarqSparse() { clear(); } LevMarqSparse::LevMarqSparse(int npoints, // number of points int ncameras, // number of cameras int nPointParams, // number of params per one point (3 in case of 3D points) int nCameraParams, // number of parameters per one camera int nErrParams, // number of parameters in measurement vector // for 1 point at one camera (2 in case of 2D projections) Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras // 1 - point is visible for the camera, 0 - invisible Mat& P0, // starting vector of parameters, first cameras then points Mat& X_, // measurements, in order of visibility. non visible cases are skipped TermCriteria criteria, // termination criteria // callback for estimation of Jacobian matrices void (CV_CDECL * fjac)(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data), // callback for estimation of backprojection errors void (CV_CDECL * func)(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data), void* data, // user-specific data passed to the callbacks BundleAdjustCallback _cb, void* _user_data ) { Vis_index = X = prevP = P = deltaP = err = JtJ_diag = S = hX = NULL; U = ea = V = inv_V_star = eb = Yj = NULL; A = B = W = NULL; cb = _cb; user_data = _user_data; run(npoints, ncameras, nPointParams, nCameraParams, nErrParams, visibility, P0, X_, criteria, fjac, func, data); } void LevMarqSparse::clear() { for( int i = 0; i < num_points; i++ ) { for(int j = 0; j < num_cams; j++ ) { //CvMat* tmp = ((CvMat**)(A->data.ptr + i * A->step))[j]; CvMat* tmp = A[j+i*num_cams]; if (tmp) cvReleaseMat( &tmp ); //tmp = ((CvMat**)(B->data.ptr + i * B->step))[j]; tmp = B[j+i*num_cams]; if (tmp) cvReleaseMat( &tmp ); //tmp = ((CvMat**)(W->data.ptr + j * W->step))[i]; tmp = W[j+i*num_cams]; if (tmp) cvReleaseMat( &tmp ); } } delete A; //cvReleaseMat(&A); delete B;//cvReleaseMat(&B); delete W;//cvReleaseMat(&W); cvReleaseMat( &Vis_index); for( int j = 0; j < num_cams; j++ ) { cvReleaseMat( &U[j] ); } delete U; for( int j = 0; j < num_cams; j++ ) { cvReleaseMat( &ea[j] ); } delete ea; //allocate V and inv_V_star for( int i = 0; i < num_points; i++ ) { cvReleaseMat(&V[i]); cvReleaseMat(&inv_V_star[i]); } delete V; delete inv_V_star; for( int i = 0; i < num_points; i++ ) { cvReleaseMat(&eb[i]); } delete eb; for( int i = 0; i < num_points; i++ ) { cvReleaseMat(&Yj[i]); } delete Yj; cvReleaseMat(&X); cvReleaseMat(&prevP); cvReleaseMat(&P); cvReleaseMat(&deltaP); cvReleaseMat(&err); cvReleaseMat(&JtJ_diag); cvReleaseMat(&S); cvReleaseMat(&hX); } //A params correspond to Cameras //B params correspont to Points //num_cameras - total number of cameras //num_points - total number of points //num_par_per_camera - number of parameters per camera //num_par_per_point - number of parameters per point //num_errors - number of measurements. void LevMarqSparse::run( int num_points_, //number of points int num_cams_, //number of cameras int num_point_param_, //number of params per one point (3 in case of 3D points) int num_cam_param_, //number of parameters per one camera int num_err_param_, //number of parameters in measurement vector for 1 point at one camera (2 in case of 2D projections) Mat& visibility, //visibility matrix . rows correspond to points, columns correspond to cameras // 0 - point is visible for the camera, 0 - invisible Mat& P0, //starting vector of parameters, first cameras then points Mat& X_init, //measurements, in order of visibility. non visible cases are skipped TermCriteria criteria_init, void (*fjac_)(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data), void (*func_)(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data), void* data_ ) { //termination criteria //clear(); func = func_; //assign evaluation function fjac = fjac_; //assign jacobian data = data_; num_cams = num_cams_; num_points = num_points_; num_err_param = num_err_param_; num_cam_param = num_cam_param_; num_point_param = num_point_param_; //compute all sizes int Aij_width = num_cam_param; int Aij_height = num_err_param; int Bij_width = num_point_param; int Bij_height = num_err_param; int U_size = Aij_width; int V_size = Bij_width; int Wij_height = Aij_width; int Wij_width = Bij_width; //allocate memory for all Aij, Bij, U, V, W //allocate num_points*num_cams matrices A //Allocate matrix A whose elements are nointers to Aij //if Aij is zero (point i is not visible in camera j) then A(i,j) contains NULL //A = cvCreateMat( num_points, num_cams, CV_32S /*pointer is stored here*/ ); //B = cvCreateMat( num_points, num_cams, CV_32S /*pointer is stored here*/ ); //W = cvCreateMat( num_cams, num_points, CV_32S /*pointer is stored here*/ ); A = new CvMat* [num_points * num_cams]; B = new CvMat* [num_points * num_cams]; W = new CvMat* [num_cams * num_points]; Vis_index = cvCreateMat( num_points, num_cams, CV_32S /*integer index is stored here*/ ); //cvSetZero( A ); //cvSetZero( B ); //cvSetZero( W ); cvSet( Vis_index, cvScalar(-1) ); //fill matrices A and B based on visibility CvMat _vis = visibility; int index = 0; for (int i = 0; i < num_points; i++ ) { for (int j = 0; j < num_cams; j++ ) { if (((int*)(_vis.data.ptr+ i * _vis.step))[j] ) { ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j] = index; index += num_err_param; //create matrices Aij, Bij CvMat* tmp = cvCreateMat(Aij_height, Aij_width, CV_64F ); //((CvMat**)(A->data.ptr + i * A->step))[j] = tmp; cvSet(tmp,cvScalar(1.0,1.0,1.0,1.0)); A[j+i*num_cams] = tmp; tmp = cvCreateMat( Bij_height, Bij_width, CV_64F ); //((CvMat**)(B->data.ptr + i * B->step))[j] = tmp; cvSet(tmp,cvScalar(1.0,1.0,1.0,1.0)); B[j+i*num_cams] = tmp; tmp = cvCreateMat( Wij_height, Wij_width, CV_64F ); //((CvMat**)(W->data.ptr + j * W->step))[i] = tmp; //note indices i and j swapped cvSet(tmp,cvScalar(1.0,1.0,1.0,1.0)); W[j+i*num_cams] = tmp; } else{ A[j+i*num_cams] = NULL; B[j+i*num_cams] = NULL; W[j+i*num_cams] = NULL; } } } //allocate U U = new CvMat* [num_cams]; for (int j = 0; j < num_cams; j++ ) { U[j] = cvCreateMat( U_size, U_size, CV_64F ); cvSetZero(U[j]); } //allocate ea ea = new CvMat* [num_cams]; for (int j = 0; j < num_cams; j++ ) { ea[j] = cvCreateMat( U_size, 1, CV_64F ); cvSetZero(ea[j]); } //allocate V and inv_V_star V = new CvMat* [num_points]; inv_V_star = new CvMat* [num_points]; for (int i = 0; i < num_points; i++ ) { V[i] = cvCreateMat( V_size, V_size, CV_64F ); inv_V_star[i] = cvCreateMat( V_size, V_size, CV_64F ); cvSetZero(V[i]); cvSetZero(inv_V_star[i]); } //allocate eb eb = new CvMat* [num_points]; for (int i = 0; i < num_points; i++ ) { eb[i] = cvCreateMat( V_size, 1, CV_64F ); cvSetZero(eb[i]); } //allocate Yj Yj = new CvMat* [num_points]; for (int i = 0; i < num_points; i++ ) { Yj[i] = cvCreateMat( Wij_height, Wij_width, CV_64F ); //Yij has the same size as Wij cvSetZero(Yj[i]); } //allocate matrix S S = cvCreateMat( num_cams * num_cam_param, num_cams * num_cam_param, CV_64F); cvSetZero(S); JtJ_diag = cvCreateMat( num_cams * num_cam_param + num_points * num_point_param, 1, CV_64F ); cvSetZero(JtJ_diag); //set starting parameters CvMat _tmp_ = CvMat(P0); prevP = cvCloneMat( &_tmp_ ); P = cvCloneMat( &_tmp_ ); deltaP = cvCloneMat( &_tmp_ ); //set measurements _tmp_ = CvMat(X_init); X = cvCloneMat( &_tmp_ ); //create vector for estimated measurements hX = cvCreateMat( X->rows, X->cols, CV_64F ); cvSetZero(hX); //create error vector err = cvCreateMat( X->rows, X->cols, CV_64F ); cvSetZero(err); ask_for_proj(_vis); //compute initial error cvSub(X, hX, err ); /* assert(X->rows == hX->rows); std::cerr<<"X size = "<rows<<" "<cols<cols<rows;j+=2) { double Xj1 = *(double*)(X->data.ptr + j * X->step); double hXj1 = *(double*)(hX->data.ptr + j * hX->step); double err1 = *(double*)(err->data.ptr + j * err->step); double Xj2 = *(double*)(X->data.ptr + (j+1) * X->step); double hXj2 = *(double*)(hX->data.ptr + (j+1) * hX->step); double err2 = *(double*)(err->data.ptr + (j+1) * err->step); std::cerr<<"("< ("<data.ptr + B->step * i))[j]; CvMat* Bij = B[j+i*num_cams]; if (Bij ) { //Vi+= BijT*Bij cvGEMM( Bij, Bij, 1, V[i], 1, V[i], CV_GEMM_A_T ); //eb_i += BijT * e_ij int index = ((int*)(Vis_index->data.ptr + i * Vis_index->step))[j]; CvMat eij; cvGetSubRect( err, &eij, cvRect( 0, index, 1, Bij->height ) ); //width of transposed Bij cvGEMM( Bij, &eij, 1, eb[i], 1, eb[i], CV_GEMM_A_T ); } } } //V_i and eb_i computed for all i //compute W_ij for( int i = 0; i < num_points; i++ ) { for( int j = 0; j < num_cams; j++ ) { //CvMat* Aij = ((CvMat**)(A->data.ptr + A->step * i))[j]; CvMat* Aij = A[j+i*num_cams]; if( Aij ) { //visible //CvMat* Bij = ((CvMat**)(B->data.ptr + B->step * i))[j]; CvMat* Bij = B[j+i*num_cams]; //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i]; CvMat* Wij = W[j+i*num_cams]; //multiply cvGEMM( Aij, Bij, 1, NULL, 0, Wij, CV_GEMM_A_T ); } } } //Wij computed //backup diagonal of JtJ before we start augmenting it { CvMat dia; CvMat subr; for( int j = 0; j < num_cams; j++ ) { cvGetDiag(U[j], &dia); cvGetSubRect(JtJ_diag, &subr, cvRect(0, j*num_cam_param, 1, num_cam_param )); cvCopy( &dia, &subr ); } for( int i = 0; i < num_points; i++ ) { cvGetDiag(V[i], &dia); cvGetSubRect(JtJ_diag, &subr, cvRect(0, num_cams*num_cam_param + i * num_point_param, 1, num_point_param )); cvCopy( &dia, &subr ); } } if( iters == 0 ) { //initialize lambda. It is set to 1e-3 * average diagonal element in JtJ double average_diag = 0; for( int j = 0; j < num_cams; j++ ) { average_diag += cvTrace( U[j] ).val[0]; } for( int i = 0; i < num_points; i++ ) { average_diag += cvTrace( V[i] ).val[0]; } average_diag /= (num_cams*num_cam_param + num_points * num_point_param ); // lambda = 1e-3 * average_diag; lambda = 1e-3 * average_diag; lambda = 0.245560; } //now we are going to find good step and make it for(;;) { //augmentation of diagonal for(int j = 0; j < num_cams; j++ ) { CvMat diag; cvGetDiag( U[j], &diag ); #if 1 cvAddS( &diag, cvScalar( lambda ), &diag ); #else cvScale( &diag, &diag, 1 + lambda ); #endif } for(int i = 0; i < num_points; i++ ) { CvMat diag; cvGetDiag( V[i], &diag ); #if 1 cvAddS( &diag, cvScalar( lambda ), &diag ); #else cvScale( &diag, &diag, 1 + lambda ); #endif } bool error = false; //compute inv(V*) bool inverted_ok = true; for(int i = 0; i < num_points; i++ ) { double det = cvInvert( V[i], inv_V_star[i] ); if( fabs(det) <= FLT_EPSILON ) { inverted_ok = false; std::cerr<<"V["<data.ptr + W->step * j))[i]; CvMat* Wij = W[j+i*num_cams]; if( Wij ) { cvMatMul( Wij, inv_V_star[i], Yj[i] ); } } //compute Sjk for k>=j (because Sjk = Skj) for( int k = j; k < num_cams; k++ ) { cvSetZero( YWt ); for( int i = 0; i < num_points; i++ ) { //check that both Wij and Wik exist // CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i]; CvMat* Wij = W[j+i*num_cams]; //CvMat* Wik = ((CvMat**)(W->data.ptr + W->step * k))[i]; CvMat* Wik = W[k+i*num_cams]; if( Wij && Wik ) { //multiply YWt += Yj[i]*Wik' cvGEMM( Yj[i], Wik, 1, YWt, 1, YWt, CV_GEMM_B_T ); ///*transpose Wik } } //copy result to matrix S CvMat Sjk; //extract submat cvGetSubRect( S, &Sjk, cvRect( k * num_cam_param, j * num_cam_param, num_cam_param, num_cam_param )); //if j==k, add diagonal if( j != k ) { //just copy with minus cvScale( YWt, &Sjk, -1 ); //if we set initial S to zero then we can use cvSub( Sjk, YWt, Sjk); } else { //add diagonal value //subtract YWt from augmented Uj cvSub( U[j], YWt, &Sjk ); } } //compute right part of equation involving matrix S // e_j=ea_j - \sum_i Y_ij eb_i { CvMat e_j; //select submat cvGetSubRect( E, &e_j, cvRect( 0, j * num_cam_param, 1, num_cam_param ) ); for( int i = 0; i < num_points; i++ ) { //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i]; CvMat* Wij = W[j+i*num_cams]; if( Wij ) cvMatMulAdd( Yj[i], eb[i], &e_j, &e_j ); } cvSub( ea[j], &e_j, &e_j ); } } //fill below diagonal elements of matrix S cvCompleteSymm( S, 0 ); ///*from upper to low //operation may be done by nonzero blocks or during upper diagonal computation //Solve linear system S * deltaP_a = E CvMat dpa; cvGetSubRect( deltaP, &dpa, cvRect(0, 0, 1, S->width ) ); int res = cvSolve( S, E, &dpa, CV_CHOLESKY ); if( res ) { //system solved ok //compute db_i for( int i = 0; i < num_points; i++ ) { CvMat dbi; cvGetSubRect( deltaP, &dbi, cvRect( 0, dpa.height + i * num_point_param, 1, num_point_param ) ); // compute \sum_j W_ij^T da_j for( int j = 0; j < num_cams; j++ ) { //get Wij //CvMat* Wij = ((CvMat**)(W->data.ptr + W->step * j))[i]; CvMat* Wij = W[j+i*num_cams]; if( Wij ) { //get da_j CvMat daj; cvGetSubRect( &dpa, &daj, cvRect( 0, j * num_cam_param, 1, num_cam_param )); cvGEMM( Wij, &daj, 1, &dbi, 1, &dbi, CV_GEMM_A_T ); ///* transpose Wij } } //finalize dbi cvSub( eb[i], &dbi, &dbi ); cvMatMul(inv_V_star[i], &dbi, &dbi ); //here we get final dbi } //now we computed whole deltaP //add deltaP to delta cvAdd( prevP, deltaP, P ); //evaluate function with new parameters ask_for_proj(_vis); // func( P, hX ); //compute error errNorm = cvNorm( X, hX, CV_L2 ); } else { error = true; } } else { error = true; } //check solution if( error || ///* singularities somewhere errNorm > prevErrNorm ) { //step was not accepted //increase lambda and reject change lambda *= 10; int nviz = X->rows / num_err_param; double e2 = errNorm*errNorm, e2_prev = prevErrNorm*prevErrNorm; double e2n = e2/nviz, e2n_prev = e2_prev/nviz; std::cerr<<"move failed: lambda = "< "< criteria.max_iter ) || (criteria.type&CV_TERMCRIT_EPS && param_change_norm < criteria.epsilon) ) { // std::cerr<<"relative norm change "<data.db[6]; intr_data[4] = cam_params->data.db[7]; intr_data[2] = cam_params->data.db[8]; intr_data[5] = cam_params->data.db[9]; CvMat _A = cvMat(3,3, CV_64F, intr_data ); CvMat _dpdr, _dpdt, _dpdf, _dpdc, _dpdk; bool have_dk = cam_params->height - 10 ? true : false; cvGetCols( A, &_dpdr, 0, 3 ); cvGetCols( A, &_dpdt, 3, 6 ); cvGetCols( A, &_dpdf, 6, 8 ); cvGetCols( A, &_dpdc, 8, 10 ); if( have_dk ) { cvGetRows( cam_params, &_k, 10, cam_params->height ); cvGetCols( A, &_dpdk, 10, A->width ); } cvProjectPoints2(&_Mi, &_ri, &_ti, &_A, have_dk ? &_k : NULL, _mp, &_dpdr, &_dpdt, &_dpdf, &_dpdc, have_dk ? &_dpdk : NULL, 0); cvReleaseMat( &_mp ); //compute jacobian for point params //compute dMeasure/dPoint3D // x = (r11 * X + r12 * Y + r13 * Z + t1) // y = (r21 * X + r22 * Y + r23 * Z + t2) // z = (r31 * X + r32 * Y + r33 * Z + t3) // x' = x/z // y' = y/z //d(x') = ( dx*z - x*dz)/(z*z) //d(y') = ( dy*z - y*dz)/(z*z) //g = 1 + k1*r_2 + k2*r_4 + k3*r_6 //r_2 = x'*x' + y'*y' //d(r_2) = 2*x'*dx' + 2*y'*dy' //dg = k1* d(r_2) + k2*2*r_2*d(r_2) + k3*3*r_2*r_2*d(r_2) //x" = x'*g + 2*p1*x'*y' + p2(r_2+2*x'_2) //y" = y'*g + p1(r_2+2*y'_2) + 2*p2*x'*y' //d(x") = d(x') * g + x' * d(g) + 2*p1*( d(x')*y' + x'*dy) + p2*(d(r_2) + 2*2*x'* dx') //d(y") = d(y') * g + y' * d(g) + 2*p2*( d(x')*y' + x'*dy) + p1*(d(r_2) + 2*2*y'* dy') // u = fx*( x") + cx // v = fy*( y") + cy // du = fx * d(x") = fx * ( dx*z - x*dz)/ (z*z) // dv = fy * d(y") = fy * ( dy*z - y*dz)/ (z*z) // dx/dX = r11, dx/dY = r12, dx/dZ = r13 // dy/dX = r21, dy/dY = r22, dy/dZ = r23 // dz/dX = r31, dz/dY = r32, dz/dZ = r33 // du/dX = fx*(r11*z-x*r31)/(z*z) // du/dY = fx*(r12*z-x*r32)/(z*z) // du/dZ = fx*(r13*z-x*r33)/(z*z) // dv/dX = fy*(r21*z-y*r31)/(z*z) // dv/dY = fy*(r22*z-y*r32)/(z*z) // dv/dZ = fy*(r23*z-y*r33)/(z*z) //get rotation matrix double R[9], t[3], fx = intr_data[0], fy = intr_data[4]; CvMat _R = cvMat( 3, 3, CV_64F, R ); cvRodrigues2(&_ri, &_R); double X,Y,Z; X = point_params->data.db[0]; Y = point_params->data.db[1]; Z = point_params->data.db[2]; t[0] = _ti.data.db[0]; t[1] = _ti.data.db[1]; t[2] = _ti.data.db[2]; //compute x,y,z double x = R[0] * X + R[1] * Y + R[2] * Z + t[0]; double y = R[3] * X + R[4] * Y + R[5] * Z + t[1]; double z = R[6] * X + R[7] * Y + R[8] * Z + t[2]; #if 1 //compute x',y' double x_strike = x/z; double y_strike = y/z; //compute dx',dy' matrix // // dx'/dX dx'/dY dx'/dZ = // dy'/dX dy'/dY dy'/dZ double coeff[6] = { z, 0, -x, 0, z, -y }; CvMat coeffmat = cvMat( 2, 3, CV_64F, coeff ); CvMat* dstrike_dbig = cvCreateMat(2,3,CV_64F); cvMatMul(&coeffmat, &_R, dstrike_dbig); cvScale(dstrike_dbig, dstrike_dbig, 1/(z*z) ); if( have_dk ) { double strike_[2] = {x_strike, y_strike}; CvMat strike = cvMat(1, 2, CV_64F, strike_); //compute r_2 double r_2 = x_strike*x_strike + y_strike*y_strike; double r_4 = r_2*r_2; double r_6 = r_4*r_2; //compute d(r_2)/dbig CvMat* dr2_dbig = cvCreateMat(1,3,CV_64F); cvMatMul( &strike, dstrike_dbig, dr2_dbig); cvScale( dr2_dbig, dr2_dbig, 2 ); double& k1 = _k.data.db[0]; double& k2 = _k.data.db[1]; double& p1 = _k.data.db[2]; double& p2 = _k.data.db[3]; double k3 = 0; if( _k.cols*_k.rows == 5 ) { k3 = _k.data.db[4]; } //compute dg/dbig double dg_dr2 = k1 + k2*2*r_2 + k3*3*r_4; double g = 1+k1*r_2+k2*r_4+k3*r_6; CvMat* dg_dbig = cvCreateMat(1,3,CV_64F); cvScale( dr2_dbig, dg_dbig, dg_dr2 ); CvMat* tmp = cvCreateMat( 2, 3, CV_64F ); CvMat* dstrike2_dbig = cvCreateMat( 2, 3, CV_64F ); double c[4] = { g+2*p1*y_strike+4*p2*x_strike, 2*p1*x_strike, 2*p2*y_strike, g+2*p2*x_strike + 4*p1*y_strike }; CvMat coeffmat = cvMat(2,2,CV_64F, c ); cvMatMul(&coeffmat, dstrike_dbig, dstrike2_dbig ); cvGEMM( &strike, dg_dbig, 1, NULL, 0, tmp, CV_GEMM_A_T ); cvAdd( dstrike2_dbig, tmp, dstrike2_dbig ); double p[2] = { p2, p1 }; CvMat pmat = cvMat(2, 1, CV_64F, p ); cvMatMul( &pmat, dr2_dbig ,tmp); cvAdd( dstrike2_dbig, tmp, dstrike2_dbig ); cvCopy( dstrike2_dbig, B ); cvReleaseMat(&dr2_dbig); cvReleaseMat(&dg_dbig); cvReleaseMat(&tmp); cvReleaseMat(&dstrike2_dbig); cvReleaseMat(&tmp); } else { cvCopy(dstrike_dbig, B); } //multiply by fx, fy CvMat row; cvGetRows( B, &row, 0, 1 ); cvScale( &row, &row, fx ); cvGetRows( B, &row, 1, 2 ); cvScale( &row, &row, fy ); #else double k = fx/(z*z); cvmSet( B, 0, 0, k*(R[0]*z-x*R[6])); cvmSet( B, 0, 1, k*(R[1]*z-x*R[7])); cvmSet( B, 0, 2, k*(R[2]*z-x*R[8])); k = fy/(z*z); cvmSet( B, 1, 0, k*(R[3]*z-y*R[6])); cvmSet( B, 1, 1, k*(R[4]*z-y*R[7])); cvmSet( B, 1, 2, k*(R[5]*z-y*R[8])); #endif }; void func(int /*i*/, int /*j*/, CvMat *point_params, CvMat* cam_params, CvMat* estim, void* /*data*/) { //just do projections CvMat _Mi; cvReshape( point_params, &_Mi, 3, 1 ); CvMat* _mp = cvCreateMat(1, 1, CV_64FC2 ); //projection of the point CvMat* _mp2 = cvCreateMat(1, 2, CV_64F ); //projection of the point //split camera params into different matrices CvMat _ri, _ti, _k; cvGetRows( cam_params, &_ri, 0, 3 ); cvGetRows( cam_params, &_ti, 3, 6 ); double intr_data[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1}; intr_data[0] = cam_params->data.db[6]; intr_data[4] = cam_params->data.db[7]; intr_data[2] = cam_params->data.db[8]; intr_data[5] = cam_params->data.db[9]; CvMat _A = cvMat(3,3, CV_64F, intr_data ); //int cn = CV_MAT_CN(_Mi.type); bool have_dk = cam_params->height - 10 ? true : false; if( have_dk ) { cvGetRows( cam_params, &_k, 10, cam_params->height ); } cvProjectPoints2( &_Mi, &_ri, &_ti, &_A, have_dk ? &_k : NULL, _mp, NULL, NULL, NULL, NULL, NULL, 0); // std::cerr<<"_mp = "<<_mp->data.db[0]<<","<<_mp->data.db[1]<data.db[0] = _mp->data.db[0]; _mp2->data.db[1] = _mp->data.db[1]; cvTranspose( _mp2, estim ); cvReleaseMat( &_mp ); cvReleaseMat( &_mp2 ); }; void fjac_new(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data) { CvMat _point_params = point_params, _cam_params = cam_params, _Al = A, _Bl = B; fjac(i,j, &_point_params, &_cam_params, &_Al, &_Bl, data); }; void func_new(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data) { CvMat _point_params = point_params, _cam_params = cam_params, _estim = estim; func(i,j,&_point_params,&_cam_params,&_estim,data); }; void LevMarqSparse::bundleAdjust( vector& points, //positions of points in global coordinate system (input and output) const vector >& imagePoints, //projections of 3d points for every camera const vector >& visibility, //visibility of 3d points for every camera vector& cameraMatrix, //intrinsic matrices of all cameras (input and output) vector& R, //rotation matrices of all cameras (input and output) vector& T, //translation vector of all cameras (input and output) vector& distCoeffs, //distortion coefficients of all cameras (input and output) const TermCriteria& criteria, BundleAdjustCallback cb, void* user_data) { //,enum{MOTION_AND_STRUCTURE,MOTION,STRUCTURE}) int num_points = points.size(); int num_cameras = cameraMatrix.size(); CV_Assert( imagePoints.size() == (size_t)num_cameras && visibility.size() == (size_t)num_cameras && R.size() == (size_t)num_cameras && T.size() == (size_t)num_cameras && (distCoeffs.size() == (size_t)num_cameras || distCoeffs.size() == 0) ); int numdist = distCoeffs.size() ? (distCoeffs[0].rows * distCoeffs[0].cols) : 0; int num_cam_param = 3 /* rotation vector */ + 3 /* translation vector */ + 2 /* fx, fy */ + 2 /* cx, cy */ + numdist; int num_point_param = 3; //collect camera parameters into vector Mat params( num_cameras * num_cam_param + num_points * num_point_param, 1, CV_64F ); //fill camera params for( int i = 0; i < num_cameras; i++ ) { //rotation Mat rot_vec; Rodrigues( R[i], rot_vec ); Mat dst = params.rowRange(i*num_cam_param, i*num_cam_param+3); rot_vec.copyTo(dst); //translation dst = params.rowRange(i*num_cam_param + 3, i*num_cam_param+6); T[i].copyTo(dst); //intrinsic camera matrix double* intr_data = (double*)cameraMatrix[i].data; double* intr = (double*)(params.data + params.step * (i*num_cam_param+6)); //focals intr[0] = intr_data[0]; //fx intr[1] = intr_data[4]; //fy //center of projection intr[2] = intr_data[2]; //cx intr[3] = intr_data[5]; //cy //add distortion if exists if( distCoeffs.size() ) { dst = params.rowRange(i*num_cam_param + 10, i*num_cam_param+10+numdist); distCoeffs[i].copyTo(dst); } } //fill point params Mat ptparams(num_points, 1, CV_64FC3, params.data + num_cameras*num_cam_param*params.step); Mat _points(points); CV_Assert(_points.size() == ptparams.size() && _points.type() == ptparams.type()); _points.copyTo(ptparams); //convert visibility vectors to visibility matrix Mat vismat(num_points, num_cameras, CV_32S); for( int i = 0; i < num_cameras; i++ ) { //get row Mat col = vismat.col(i); Mat((int)visibility[i].size(), 1, vismat.type(), (void*)&visibility[i][0]).copyTo( col ); } int num_proj = countNonZero(vismat); //total number of points projections //collect measurements Mat X(num_proj*2,1,CV_64F); //measurement vector int counter = 0; for(int i = 0; i < num_points; i++ ) { for(int j = 0; j < num_cameras; j++ ) { //check visibility if( visibility[j][i] ) { //extract point and put tu vector Point2d p = imagePoints[j][i]; ((double*)(X.data))[counter] = p.x; ((double*)(X.data))[counter+1] = p.y; assert(p.x != -1 || p.y != -1); counter+=2; } } } LevMarqSparse levmar( num_points, num_cameras, num_point_param, num_cam_param, 2, vismat, params, X, TermCriteria(criteria), fjac_new, func_new, NULL, cb, user_data); //extract results //fill point params /*Mat final_points(num_points, 1, CV_64FC3, levmar.P->data.db + num_cameras*num_cam_param *levmar.P->step); CV_Assert(_points.size() == final_points.size() && _points.type() == final_points.type()); final_points.copyTo(_points);*/ points.clear(); for( int i = 0; i < num_points; i++ ) { CvMat point_mat; cvGetSubRect( levmar.P, &point_mat, cvRect( 0, levmar.num_cams * levmar.num_cam_param+ levmar.num_point_param * i, 1, levmar.num_point_param )); CvScalar x = cvGet2D(&point_mat,0,0); CvScalar y = cvGet2D(&point_mat,1,0); CvScalar z = cvGet2D(&point_mat,2,0); points.push_back(Point3f(x.val[0],y.val[0],z.val[0])); //std::cerr<<"point"<