/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; //////////////////////////////////////////////////////////////////////// //////////////////////////////// GpuMat //////////////////////////////// //////////////////////////////////////////////////////////////////////// #if !defined (HAVE_CUDA) namespace cv { namespace gpu { void GpuMat::upload(const Mat& /*m*/) { throw_nogpu(); } void GpuMat::download(cv::Mat& /*m*/) const { throw_nogpu(); } void GpuMat::copyTo( GpuMat& /*m*/ ) const { throw_nogpu(); } void GpuMat::copyTo( GpuMat& /*m*/, const GpuMat&/* mask */) const { throw_nogpu(); } void GpuMat::convertTo( GpuMat& /*m*/, int /*rtype*/, double /*alpha*/, double /*beta*/ ) const { throw_nogpu(); } GpuMat& GpuMat::operator = (const Scalar& /*s*/) { throw_nogpu(); return *this; } GpuMat& GpuMat::setTo(const Scalar& /*s*/, const GpuMat& /*mask*/) { throw_nogpu(); return *this; } GpuMat GpuMat::reshape(int /*new_cn*/, int /*new_rows*/) const { throw_nogpu(); return GpuMat(); } void GpuMat::create(int /*_rows*/, int /*_cols*/, int /*_type*/) { throw_nogpu(); } void GpuMat::release() { throw_nogpu(); } void CudaMem::create(int /*_rows*/, int /*_cols*/, int /*_type*/, int /*type_alloc*/) { throw_nogpu(); } bool CudaMem::canMapHostMemory() { throw_nogpu(); return false; } void CudaMem::release() { throw_nogpu(); } GpuMat CudaMem::createGpuMatHeader () const { throw_nogpu(); return GpuMat(); } } } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace gpu { namespace matrix_operations { void copy_to_with_mask(const DevMem2D& src, DevMem2D dst, int depth, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0); void set_to_without_mask (DevMem2D dst, int depth, const double *scalar, int channels, const cudaStream_t & stream = 0); void set_to_with_mask (DevMem2D dst, int depth, const double *scalar, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0); void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, int channels, double alpha, double beta, const cudaStream_t & stream = 0); } } } void cv::gpu::GpuMat::upload(const Mat& m) { CV_DbgAssert(!m.empty()); create(m.size(), m.type()); cudaSafeCall( cudaMemcpy2D(data, step, m.data, m.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) ); } void cv::gpu::GpuMat::upload(const CudaMem& m, Stream& stream) { CV_DbgAssert(!m.empty()); stream.enqueueUpload(m, *this); } void cv::gpu::GpuMat::download(cv::Mat& m) const { CV_DbgAssert(!this->empty()); m.create(size(), type()); cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) ); } void cv::gpu::GpuMat::download(CudaMem& m, Stream& stream) const { CV_DbgAssert(!m.empty()); stream.enqueueDownload(*this, m); } void cv::gpu::GpuMat::copyTo( GpuMat& m ) const { CV_DbgAssert(!this->empty()); m.create(size(), type()); cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) ); cudaSafeCall( cudaThreadSynchronize() ); } void cv::gpu::GpuMat::copyTo( GpuMat& mat, const GpuMat& mask ) const { if (mask.empty()) { copyTo(mat); } else { mat.create(size(), type()); cv::gpu::matrix_operations::copy_to_with_mask(*this, mat, depth(), mask, channels()); } } namespace { template struct NPPTypeTraits; template<> struct NPPTypeTraits { typedef Npp8u npp_type; }; template<> struct NPPTypeTraits { typedef Npp16u npp_type; }; template<> struct NPPTypeTraits { typedef Npp16s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32f npp_type; }; template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI); }; template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode); }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; static void cvt(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), src.step, dst.ptr(), dst.step, sz) ); } }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type dst_t; static void cvt(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), src.step, dst.ptr(), dst.step, sz, NPP_RND_NEAR) ); } }; void convertToKernelCaller(const GpuMat& src, GpuMat& dst) { matrix_operations::convert_to(src, src.depth(), dst, dst.depth(), src.channels(), 1.0, 0.0); } } void cv::gpu::GpuMat::convertTo( GpuMat& dst, int rtype, double alpha, double beta ) const { bool noScale = fabs(alpha-1) < std::numeric_limits::epsilon() && fabs(beta) < std::numeric_limits::epsilon(); if( rtype < 0 ) rtype = type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); int scn = channels(); int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype); if( sdepth == ddepth && noScale ) { copyTo(dst); return; } GpuMat temp; const GpuMat* psrc = this; if( sdepth != ddepth && psrc == &dst ) psrc = &(temp = *this); dst.create( size(), rtype ); if (!noScale) matrix_operations::convert_to(*psrc, sdepth, dst, ddepth, psrc->channels(), alpha, beta); else { typedef void (*convert_caller_t)(const GpuMat& src, GpuMat& dst); static const convert_caller_t convert_callers[8][8][4] = { { {0,0,0,0}, {convertToKernelCaller, convertToKernelCaller, convertToKernelCaller, convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt::cvt}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt::cvt}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt::cvt}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt::cvt}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {0,0,0,0} }, { {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0} } }; convert_callers[sdepth][ddepth][scn-1](*psrc, dst); } } GpuMat& GpuMat::operator = (const Scalar& s) { setTo(s); return *this; } namespace { template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void set(GpuMat& src, const Scalar& s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), src.step, sz) ); } }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void set(GpuMat& src, const Scalar& s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), src.step, sz) ); } }; void kernelSet(GpuMat& src, const Scalar& s) { matrix_operations::set_to_without_mask(src, src.depth(), s.val, src.channels()); } template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void set(GpuMat& src, const Scalar& s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), src.step, sz, mask.ptr(), mask.step) ); } }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void set(GpuMat& src, const Scalar& s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), src.step, sz, mask.ptr(), mask.step) ); } }; void kernelSetMask(GpuMat& src, const Scalar& s, const GpuMat& mask) { matrix_operations::set_to_with_mask(src, src.depth(), s.val, mask, src.channels()); } } GpuMat& GpuMat::setTo(const Scalar& s, const GpuMat& mask) { CV_Assert(mask.type() == CV_8UC1); CV_DbgAssert(!this->empty()); NppiSize sz; sz.width = cols; sz.height = rows; if (mask.empty()) { typedef void (*set_caller_t)(GpuMat& src, const Scalar& s); static const set_caller_t set_callers[8][4] = { {NppSet::set,kernelSet,kernelSet,NppSet::set}, {kernelSet,kernelSet,kernelSet,kernelSet}, {NppSet::set,kernelSet,kernelSet,NppSet::set}, {NppSet::set,kernelSet,kernelSet,NppSet::set}, {NppSet::set,kernelSet,kernelSet,NppSet::set}, {NppSet::set,kernelSet,kernelSet,NppSet::set}, {kernelSet,kernelSet,kernelSet,kernelSet}, {0,0,0,0} }; set_callers[depth()][channels()-1](*this, s); } else { typedef void (*set_caller_t)(GpuMat& src, const Scalar& s, const GpuMat& mask); static const set_caller_t set_callers[8][4] = { {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {kernelSetMask,kernelSetMask,kernelSetMask,kernelSetMask}, {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {kernelSetMask,kernelSetMask,kernelSetMask,kernelSetMask}, {0,0,0,0} }; set_callers[depth()][channels()-1](*this, s, mask); } return *this; } GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const { GpuMat hdr = *this; int cn = channels(); if( new_cn == 0 ) new_cn = cn; int total_width = cols * cn; if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 ) new_rows = rows * total_width / new_cn; if( new_rows != 0 && new_rows != rows ) { int total_size = total_width * rows; if( !isContinuous() ) CV_Error( CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed" ); if( (unsigned)new_rows > (unsigned)total_size ) CV_Error( CV_StsOutOfRange, "Bad new number of rows" ); total_width = total_size / new_rows; if( total_width * new_rows != total_size ) CV_Error( CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows" ); hdr.rows = new_rows; hdr.step = total_width * elemSize1(); } int new_width = total_width / new_cn; if( new_width * new_cn != total_width ) CV_Error( CV_BadNumChannels, "The total width is not divisible by the new number of channels" ); hdr.cols = new_width; hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT); return hdr; } void cv::gpu::GpuMat::create(int _rows, int _cols, int _type) { _type &= TYPE_MASK; if( rows == _rows && cols == _cols && type() == _type && data ) return; if( data ) release(); CV_DbgAssert( _rows >= 0 && _cols >= 0 ); if( _rows > 0 && _cols > 0 ) { flags = Mat::MAGIC_VAL + _type; rows = _rows; cols = _cols; size_t esz = elemSize(); void *dev_ptr; cudaSafeCall( cudaMallocPitch(&dev_ptr, &step, esz * cols, rows) ); if (esz * cols == step) flags |= Mat::CONTINUOUS_FLAG; int64 _nettosize = (int64)step*rows; size_t nettosize = (size_t)_nettosize; datastart = data = (uchar*)dev_ptr; dataend = data + nettosize; refcount = (int*)fastMalloc(sizeof(*refcount)); *refcount = 1; } } void cv::gpu::GpuMat::release() { if( refcount && CV_XADD(refcount, -1) == 1 ) { fastFree(refcount); cudaSafeCall( cudaFree(datastart) ); } data = datastart = dataend = 0; step = rows = cols = 0; refcount = 0; } /////////////////////////////////////////////////////////////////////// //////////////////////////////// CudaMem ////////////////////////////// /////////////////////////////////////////////////////////////////////// bool cv::gpu::CudaMem::canMapHostMemory() { cudaDeviceProp prop; cudaGetDeviceProperties(&prop, 0); return (prop.canMapHostMemory != 0) ? true : false; } void cv::gpu::CudaMem::create(int _rows, int _cols, int _type, int _alloc_type) { if (_alloc_type == ALLOC_ZEROCOPY && !canMapHostMemory()) cv::gpu::error("ZeroCopy is not supported by current device", __FILE__, __LINE__); _type &= TYPE_MASK; if( rows == _rows && cols == _cols && type() == _type && data ) return; if( data ) release(); CV_DbgAssert( _rows >= 0 && _cols >= 0 ); if( _rows > 0 && _cols > 0 ) { flags = Mat::MAGIC_VAL + Mat::CONTINUOUS_FLAG + _type; rows = _rows; cols = _cols; step = elemSize()*cols; int64 _nettosize = (int64)step*rows; size_t nettosize = (size_t)_nettosize; if( _nettosize != (int64)nettosize ) CV_Error(CV_StsNoMem, "Too big buffer is allocated"); size_t datasize = alignSize(nettosize, (int)sizeof(*refcount)); //datastart = data = (uchar*)fastMalloc(datasize + sizeof(*refcount)); alloc_type = _alloc_type; void *ptr; switch (alloc_type) { case ALLOC_PAGE_LOCKED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocDefault) ); break; case ALLOC_ZEROCOPY: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocMapped) ); break; case ALLOC_WRITE_COMBINED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocWriteCombined) ); break; default: cv::gpu::error("Invalid alloc type", __FILE__, __LINE__); } datastart = data = (uchar*)ptr; dataend = data + nettosize; refcount = (int*)cv::fastMalloc(sizeof(*refcount)); *refcount = 1; } } GpuMat cv::gpu::CudaMem::createGpuMatHeader () const { GpuMat res; if (alloc_type == ALLOC_ZEROCOPY) { void *pdev; cudaSafeCall( cudaHostGetDevicePointer( &pdev, data, 0 ) ); res = GpuMat(rows, cols, type(), pdev, step); } else cv::gpu::error("Zero-copy is not supported or memory was allocated without zero-copy flag", __FILE__, __LINE__); return res; } void cv::gpu::CudaMem::release() { if( refcount && CV_XADD(refcount, -1) == 1 ) { cudaSafeCall( cudaFreeHost(datastart ) ); fastFree(refcount); } data = datastart = dataend = 0; step = rows = cols = 0; refcount = 0; } #endif /* !defined (HAVE_CUDA) */