#include #include #include #include #include #include #include #ifdef HAVE_OPENCV_XFEATURES2D #include "opencv2/xfeatures2d.hpp" #endif using namespace std; using namespace cv; static void help(char** argv) { cout << "This is a sample usage of AffineFeature detector/extractor.\n" << "And this is a C++ version of samples/python/asift.py\n" << "Usage: " << argv[0] << "\n" << " [ --feature= ] # Feature to use.\n" << " [ --flann ] # use Flann-based matcher instead of bruteforce.\n" << " [ --maxlines= ] # The maximum number of lines in visualizing the matching result.\n" << " [ --image1= ]\n" << " [ --image2= ] # Path to images to compare." << endl; } static double timer() { return getTickCount() / getTickFrequency(); } int main(int argc, char** argv) { vector fileName; cv::CommandLineParser parser(argc, argv, "{help h ||}" "{feature|orb|}" "{flann||}" "{maxlines|50|}" "{image1|aero1.jpg|}{image2|aero3.jpg|}"); if (parser.has("help")) { help(argv); return 0; } string feature = parser.get("feature"); bool useFlann = parser.has("flann"); int maxlines = parser.get("maxlines"); fileName.push_back(samples::findFile(parser.get("image1"))); fileName.push_back(samples::findFile(parser.get("image2"))); if (!parser.check()) { parser.printErrors(); cout << "See --help (or missing '=' between argument name and value?)" << endl; return 1; } Mat img1 = imread(fileName[0], IMREAD_GRAYSCALE); Mat img2 = imread(fileName[1], IMREAD_GRAYSCALE); if (img1.empty()) { cerr << "Image " << fileName[0] << " is empty or cannot be found" << endl; return 1; } if (img2.empty()) { cerr << "Image " << fileName[1] << " is empty or cannot be found" << endl; return 1; } Ptr backend; Ptr matcher; if (feature == "sift") { backend = SIFT::create(); if (useFlann) matcher = DescriptorMatcher::create("FlannBased"); else matcher = DescriptorMatcher::create("BruteForce"); } else if (feature == "orb") { backend = ORB::create(); if (useFlann) matcher = makePtr(makePtr(6, 12, 1)); else matcher = DescriptorMatcher::create("BruteForce-Hamming"); } else if (feature == "brisk") { #ifdef HAVE_OPENCV_XFEATURES2D backend = xfeatures2d::BRISK::create(); if (useFlann) matcher = makePtr(makePtr(6, 12, 1)); else matcher = DescriptorMatcher::create("BruteForce-Hamming"); #else cout << "OpenCV is built without opencv_contrib modules. BRISK algorithm is not available!" << std::endl; return -1; #endif } else { cerr << feature << " is not supported. See --help" << endl; return 1; } cout << "extracting with " << feature << "..." << endl; Ptr ext = AffineFeature::create(backend); vector kp1, kp2; Mat desc1, desc2; ext->detectAndCompute(img1, Mat(), kp1, desc1); ext->detectAndCompute(img2, Mat(), kp2, desc2); cout << "img1 - " << kp1.size() << " features, " << "img2 - " << kp2.size() << " features" << endl; cout << "matching with " << (useFlann ? "flann" : "bruteforce") << "..." << endl; double start = timer(); // match and draw vector< vector > rawMatches; vector p1, p2; vector distances; matcher->knnMatch(desc1, desc2, rawMatches, 2); // filter_matches for (size_t i = 0; i < rawMatches.size(); i++) { const vector& m = rawMatches[i]; if (m.size() == 2 && m[0].distance < m[1].distance * 0.75) { p1.push_back(kp1[m[0].queryIdx].pt); p2.push_back(kp2[m[0].trainIdx].pt); distances.push_back(m[0].distance); } } vector status; vector< pair > pointPairs; Mat H = findHomography(p1, p2, status, RANSAC); int inliers = 0; for (size_t i = 0; i < status.size(); i++) { if (status[i]) { pointPairs.push_back(make_pair(p1[i], p2[i])); distances[inliers] = distances[i]; // CV_Assert(inliers <= (int)i); inliers++; } } distances.resize(inliers); cout << "execution time: " << fixed << setprecision(2) << (timer()-start)*1000 << " ms" << endl; cout << inliers << " / " << status.size() << " inliers/matched" << endl; cout << "visualizing..." << endl; vector indices(inliers); cv::sortIdx(distances, indices, SORT_EVERY_ROW+SORT_ASCENDING); // explore_match int h1 = img1.size().height; int w1 = img1.size().width; int h2 = img2.size().height; int w2 = img2.size().width; Mat vis = Mat::zeros(max(h1, h2), w1+w2, CV_8U); img1.copyTo(Mat(vis, Rect(0, 0, w1, h1))); img2.copyTo(Mat(vis, Rect(w1, 0, w2, h2))); cvtColor(vis, vis, COLOR_GRAY2BGR); vector corners(4); corners[0] = Point2f(0, 0); corners[1] = Point2f((float)w1, 0); corners[2] = Point2f((float)w1, (float)h1); corners[3] = Point2f(0, (float)h1); vector icorners; perspectiveTransform(corners, corners, H); transform(corners, corners, Matx23f(1,0,(float)w1,0,1,0)); Mat(corners).convertTo(icorners, CV_32S); polylines(vis, icorners, true, Scalar(255,255,255)); for (int i = 0; i < min(inliers, maxlines); i++) { int idx = indices[i]; const Point2f& pi1 = pointPairs[idx].first; const Point2f& pi2 = pointPairs[idx].second; circle(vis, pi1, 2, Scalar(0,255,0), -1); circle(vis, pi2 + Point2f((float)w1,0), 2, Scalar(0,255,0), -1); line(vis, pi1, pi2 + Point2f((float)w1,0), Scalar(0,255,0)); } if (inliers > maxlines) cout << "only " << maxlines << " inliers are visualized" << endl; imshow("affine find_obj", vis); // Mat vis2 = Mat::zeros(max(h1, h2), w1+w2, CV_8U); // Mat warp1; // warpPerspective(img1, warp1, H, Size(w1, h1)); // warp1.copyTo(Mat(vis2, Rect(0, 0, w1, h1))); // img2.copyTo(Mat(vis2, Rect(w1, 0, w2, h2))); // imshow("warped", vis2); waitKey(); cout << "done" << endl; return 0; }