// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "perf_precomp.hpp" #include namespace opencv_test { struct Conv3DParam_t { int kernel[3]; struct BlobShape { int dims[5]; } shapeIn; int outCN; int groups; int stride[3]; int dilation[3]; int pad[6]; const char* padMode; bool hasBias; double declared_flops; }; // Details: #12142 static const Conv3DParam_t testConvolution3DConfigs[] = { {{3, 3, 3}, {{1, 6, 10, 38, 50}}, 6, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "VALID", true, 26956800.}, {{3, 3, 3}, {{1, 2, 19, 19, 19}}, 2, 2, {2, 2, 2}, {1, 1, 1}, {1, 1, 1, 1, 1, 1}, "", true, 218000.}, {{3, 3, 3}, {{1, 2, 25, 19, 19}}, 2, 2, {1, 2, 2}, {1, 1, 1}, {2, 2, 2, 2, 2, 2}, "SAME", false, 545000.}, {{3, 3, 3}, {{1, 11, 9, 150, 200}}, 11, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "VALID", true, 1342562760.}, {{3, 3, 3}, {{1, 10, 98, 10, 10}}, 10, 1, {1, 1, 1}, {1, 1, 1}, {1, 0, 1, 1, 0,1}, "SAME", false, 53018000.}, {{5, 5, 5}, {{1, 6, 19, 19, 19}}, 6, 2, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", false, 30395250.}, {{5, 5, 5}, {{1, 4, 50, 19, 19}}, 4, 1, {2, 2, 2}, {1, 1, 1}, {1, 1, 1, 1, 1, 1}, "VALID", false, 5893888.}, {{5, 5, 5}, {{1, 3, 75, 75, 100}}, 3, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "SAME", true, 1267312500.}, {{5, 5, 5}, {{1, 2, 21, 75, 100}}, 2, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", true, 116103744.}, {{5, 5, 5}, {{1, 4, 40, 75, 75}}, 4, 1, {2, 2, 2}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", false, 93405312.}, {{7, 7, 7}, {{1, 6, 15, 19, 19}}, 6, 1, {2, 1, 1}, {1, 1, 1}, {3, 3, 3, 3, 3, 3}, "SAME", true, 71339376.}, {{7, 7, 7}, {{1, 2, 38, 38, 38}}, 2, 1, {1, 2, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", false, 44990464.}, {{1, 1, 1}, {{1, 4, 9, 10, 10}}, 4, 1, {1, 1, 2}, {1, 1, 1}, {1, 1, 1, 1, 1, 1}, "VALID", false, 16200.}, {{3, 1, 4}, {{1, 14, 5, 10, 10}}, 14, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "SAME", false, 2359000.}, {{1, 1, 1}, {{1, 8, 1, 10, 10}}, 8, 8, {1, 1, 1}, {1, 1, 1}, {1, 1, 1, 1, 1, 1}, "", true, 58752.}, {{3, 4, 2}, {{1, 4, 8, 10, 10}}, 4, 4, {1, 2, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", true, 166752.} }; struct Conv3DParamID { enum { CONV_0 = 0, CONV_100 = 16, CONV_LAST = sizeof(testConvolution3DConfigs) / sizeof(testConvolution3DConfigs[0]) }; int val_; Conv3DParamID(int val = 0) : val_(val) {} operator int() const { return val_; } static ::testing::internal::ParamGenerator all() { #if 0 enum { NUM = (int)CONV_LAST }; #else enum { NUM = (int)CONV_100 }; #endif Conv3DParamID v_[NUM]; for (int i = 0; i < NUM; ++i) { v_[i] = Conv3DParamID(i); } // reduce generated code size return ::testing::ValuesIn(v_, v_ + NUM); } }; static inline void PrintTo(const Conv3DParamID& v, std::ostream* os) { CV_Assert((int)v >= 0); CV_Assert((int)v < Conv3DParamID::CONV_LAST); const Conv3DParam_t& p = testConvolution3DConfigs[(int)v]; *os << "GFLOPS=" << cv::format("%.3f", p.declared_flops * 1e-9) << ", K=[" << p.kernel[0] << " x " << p.kernel[1] << " x " << p.kernel[2] << "]" << ", IN={" << p.shapeIn.dims[0] << ", " << p.shapeIn.dims[1] << ", " << p.shapeIn.dims[2] << ", " << p.shapeIn.dims[3] << ", " << p.shapeIn.dims[4] << "}" << ", OCN=" << p.outCN; if (p.groups > 1) *os << ", G=" << p.groups; if (p.stride[0] * p.stride[1] * p.stride[2] != 1) *os << ", S=[" << p.stride[0] << " x " << p.stride[1] << " x " << p.stride[2] << "]"; if (p.dilation[0] * p.dilation[1] * p.dilation[2] != 1) *os << ", D=[" << p.dilation[0] << " x " << p.dilation[1] << " x " << p.dilation[2] << "]"; if (p.pad[0] != 0 && p.pad[1] != 0 && p.pad[2] != 0 && p.pad[3] != 0 && p.pad[4] != 0 && p.pad[5] != 0) *os << ", P=(" << p.pad[0] << ", " << p.pad[3] << ") x (" << p.pad[1] << ", " << p.pad[4] << ") x (" << p.pad[2] << ", " << p.pad[5] << ")"; if (!((std::string)p.padMode).empty()) *os << ", PM=" << ((std::string)p.padMode); if (p.hasBias) *os << ", BIAS"; } typedef tuple > Conv3DTestParam_t; typedef TestBaseWithParam Conv3D; PERF_TEST_P_(Conv3D, conv3d) { int test_id = (int)get<0>(GetParam()); ASSERT_GE(test_id, 0); ASSERT_LT(test_id, Conv3DParamID::CONV_LAST); const Conv3DParam_t& params = testConvolution3DConfigs[test_id]; double declared_flops = params.declared_flops; DictValue kernel = DictValue::arrayInt(¶ms.kernel[0], 3); DictValue stride = DictValue::arrayInt(¶ms.stride[0], 3); DictValue pad = DictValue::arrayInt(¶ms.pad[0], 6); DictValue dilation = DictValue::arrayInt(¶ms.dilation[0], 3); MatShape inputShape = MatShape(params.shapeIn.dims, params.shapeIn.dims + 5); int outChannels = params.outCN; int groups = params.groups; std::string padMode(params.padMode); bool hasBias = params.hasBias; Backend backendId = get<0>(get<1>(GetParam())); Target targetId = get<1>(get<1>(GetParam())); if (targetId != DNN_TARGET_CPU && backendId != DNN_BACKEND_CUDA) throw SkipTestException("Only CPU and CUDA is supported"); int inChannels = inputShape[1]; int sz[] = {outChannels, inChannels / groups, params.kernel[0], params.kernel[1], params.kernel[2]}; Mat weights(5, &sz[0], CV_32F); randu(weights, -1.0f, 1.0f); LayerParams lp; lp.set("kernel_size", kernel); lp.set("pad", pad); if (!padMode.empty()) lp.set("pad_mode", padMode); lp.set("stride", stride); lp.set("dilation", dilation); lp.set("num_output", outChannels); lp.set("group", groups); lp.set("bias_term", hasBias); lp.type = "Convolution"; lp.name = "testLayer"; lp.blobs.push_back(weights); if (hasBias) { Mat bias(1, outChannels, CV_32F); randu(bias, -1.0f, 1.0f); lp.blobs.push_back(bias); } int inpSz[] = {1, inChannels, inputShape[2], inputShape[3], inputShape[4]}; Mat input(5, &inpSz[0], CV_32F); randu(input, -1.0f, 1.0f); Net net; net.addLayerToPrev(lp.name, lp.type, lp); net.setInput(input); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat output = net.forward(); MatShape netInputShape = shape(input); size_t weightsMemory = 0, blobsMemory = 0; net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory); int64 flops = net.getFLOPS(netInputShape); CV_Assert(flops > 0); std::cout << "IN=" << divUp(input.total() * input.elemSize(), 1u<<10) << " Kb " << netInputShape << " OUT=" << divUp(output.total() * output.elemSize(), 1u<<10) << " Kb " << shape(output) << " Weights(parameters): " << divUp(weightsMemory, 1u<<10) << " Kb" << " MFLOPS=" << flops * 1e-6 << std::endl; TEST_CYCLE() { Mat res = net.forward(); } EXPECT_NEAR(flops, declared_flops, declared_flops * 1e-6); SANITY_CHECK_NOTHING(); } INSTANTIATE_TEST_CASE_P(/**/, Conv3D, Combine( Conv3DParamID::all(), dnnBackendsAndTargets(/* withInferenceEngine = */false, /* obsolete_withHalide = */false) // defined in ../test/test_common.hpp )); } // namespace